【題目】如圖,AD是△ABC的中線,tanB= ,cosC= ,AC= .求:
(1)BC的長;
(2)sin∠ADC的值.

【答案】
(1)解:過點A作AE⊥BC于點E,

∵cosC=

∴∠C=45°,

在Rt△ACE中,CE=ACcosC=1,

∴AE=CE=1,

在Rt△ABE中,tanB= ,即 = ,

∴BE=3AE=3,

∴BC=BE+CE=4


(2)解:∵AD是△ABC的中線,

∴CD= BC=2,

∴DE=CD﹣CE=1,

∵AE⊥BC,DE=AE,

∴∠ADC=45°,

∴sin∠ADC=


【解析】(1)過點A作AE⊥BC于點E,根據(jù)cosC= ,求出∠C=45°,求出AE=CE=1,根據(jù)tanB= ,求出BE的長即可;(2)根據(jù)AD是△ABC的中線,求出BD的長,得到DE的長,得到答案.
【考點精析】解答此題的關(guān)鍵在于理解解直角三角形的相關(guān)知識,掌握解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2 -(m+1)x+2(m-1)=0,

1)求證:無論m取何值時,方程總有實數(shù)根;

2)若等腰三角形腰長為4,另兩邊恰好是此方程的根,求此三角形的另外兩條邊長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點F,點E在BD上,且
(1)試問:∠BAE與∠CAD相等嗎?為什么?
(2)試判斷△ABE與△ACD是否相似?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把ABC紙片沿DE折疊,當(dāng)點A落在四邊形BCDE內(nèi)部時,∠A與∠1、2之間的數(shù)量關(guān)系為____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)已知等腰三角形的一邊長等于8cm,一邊長等于9cm,求它的周長;

(2)等腰三角形的一邊長等于6cm,周長等于28cm,求其他兩邊的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線經(jīng)過A(﹣1,0),B(5,0),C(0,- )三點.

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上有一點P,使PA+PC的值最小,求點P的坐標(biāo);
(3)點M為x軸上一動點,在拋物線上是否存在一點N,使以A,C,M,N四點構(gòu)成的四邊形為平行四邊形?若存在,求點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)yl=x(x≥0), (x>0)的圖象如圖所示,則結(jié)論: ①兩函數(shù)圖象的交點A的坐標(biāo)為(3,3);
②當(dāng)x>3時,y2>y1;
③當(dāng)x=1時,BC=8;
④當(dāng)x逐漸增大時,yl隨著x的增大而增大,y2隨著x的增大而減。
其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在第1ABA1B=40°,BAA1=∠BA1A,A1B上取一點C,延長AA1A2,使得在第2A1CA2,A1CA2=∠A1 A2C;A2C上取一點D,延長A1A2A3使得在第3A2DA3,A2DA3=∠A2 A3D,按此做法進行下去,3個三角形中以A3為頂點的內(nèi)角的度數(shù)為 ;n個三角形中以An為頂點的內(nèi)角的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了提升初中學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新精神,舉辦“玩轉(zhuǎn)數(shù)學(xué)”比賽.現(xiàn)有甲、乙、丙三個小組進入決賽,評委從研究報告、小組展示、答辯三個方面為各小組打分,各項成績均按百分制記錄.甲、乙、丙三個小組各項得分如表:

小組

研究報告

小組展示

答辯

91

80

78

81

74

85

79

83

90


(1)計算各小組的平均成績,并從高分到低分確定小組的排名順序;
(2)如果按照研究報告占40%,小組展示占30%,答辯占30%計算各小組的成績,哪個小組的成績最高?

查看答案和解析>>

同步練習(xí)冊答案