【題目】已知:點(diǎn)為直線上一點(diǎn), ,射線平分,設(shè).
(1)如圖①所示,若,則 .
(2)若將繞點(diǎn)旋轉(zhuǎn)至圖②的位置,試用含的代數(shù)式表示的大小,并說(shuō)明理由;
(3)若將繞點(diǎn)旋轉(zhuǎn)至圖③的位置,則用含的代數(shù)式表示的大小,即 .
(4)若將繞點(diǎn)旋轉(zhuǎn)至圖④的位置,繼續(xù)探究和的數(shù)量關(guān)系,則用含的代數(shù)式表示的大小,即 .
【答案】(1)50;(2);(3);(4)
【解析】
(1)根據(jù)“∠COD=90°,∠COE=25°”求出∠DOE的度數(shù),再結(jié)合角平分線求出∠AOD的度數(shù),即可得出答案;
(2)重復(fù)(1)中步驟,將∠COE的度數(shù)代替成計(jì)算即可得出答案;
(3)根據(jù)圖得出∠DOE=∠COD-∠COE=90°-,結(jié)合角平分線的性質(zhì)以及平角的性質(zhì)計(jì)算即可得出答案;
(4)根據(jù)圖得出∠DOE=∠COE-∠COD=-90°,結(jié)合角平分線的性質(zhì)以及平角的性質(zhì)計(jì)算即可得出答案.
解:(1)∵∠COD=90°,∠COE=25°
∴∠DOE=∠COD-∠COE=65°
又OE平分∠AOD
∴∠AOD=2∠DOE=130°
∴∠BOD=180°-∠AOD=50°
(2)∵∠COD=90°,∠COE=
∴∠DOE=∠COD-∠COE=90°-
又OE平分∠AOD
∴∠AOD=2∠DOE=180°-
∴∠BOD=180°-∠AOD=2
(3)∵∠COD=90°,∠COE=
∴∠DOE=∠COD-∠COE=90°-
又OE平分∠AOD
∴∠AOD=2∠DOE=180°-
∴∠BOD=180°-∠AOD=2
(4)∵∠COD=90°,∠COE=
∴∠DOE=∠COE-∠COD=-90°
又OE平分∠AOD
∴∠AOD=2∠DOE=-180°
∴∠BOD=180°-∠AOD=360°-2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】墊球是排球運(yùn)動(dòng)的一項(xiàng)重要技術(shù).下列圖表中的數(shù)據(jù)分別是甲、乙、內(nèi)三個(gè)運(yùn)動(dòng)員十次墊球測(cè)試的成績(jī),規(guī)則為每次測(cè)試連續(xù)墊球10個(gè),每墊球到位1個(gè)記1分.
測(cè)試序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成績(jī)(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)寫(xiě)出運(yùn)動(dòng)員甲測(cè)試成績(jī)的眾數(shù)和中位數(shù);
(2)試從平均數(shù)和方差兩個(gè)角度綜合分析,若在他們?nèi)酥羞x擇一位墊球成績(jī)優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰(shuí)更合適?(參考數(shù)據(jù):三人成績(jī)的方差分別為S甲2=0.8、S乙2=0.4、s丙2=0.81)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,∠B=60°.G是CD的中點(diǎn),E是邊AD上的動(dòng)點(diǎn),EG的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)F,連結(jié)CE,DF,下列說(shuō)法不正確的是( )
A. 四邊形CEDF是平行四邊形
B. 當(dāng)時(shí),四邊形CEDF是矩形
C. 當(dāng)時(shí),四邊形CEDF是菱形
D. 當(dāng)時(shí),四邊形CEDF是菱形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】是線段上任一點(diǎn),,兩點(diǎn)分別從同時(shí)向點(diǎn)運(yùn)動(dòng),且點(diǎn)的運(yùn)動(dòng)速度為,點(diǎn)的運(yùn)動(dòng)速度為,運(yùn)動(dòng)的時(shí)間為.
(1)若,
①運(yùn)動(dòng)后,求的長(zhǎng);
②當(dāng)在線段上運(yùn)動(dòng)時(shí),試說(shuō)明;
(2)如果時(shí),,試探索的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市霧霾天氣趨于嚴(yán)重,甲商場(chǎng)根據(jù)民眾健康需要,代理銷(xiāo)售每臺(tái)進(jìn)價(jià)分別為600元、560
元的 A、B 兩種型號(hào)的空氣凈化器,如表是近兩周的銷(xiāo)售情況:(進(jìn)價(jià)、售價(jià)均保持不變,利潤(rùn)=銷(xiāo)
售收入進(jìn)貨成本)
銷(xiāo)售時(shí)段 | 銷(xiāo)售數(shù)量 | 銷(xiāo)售收入 (元) | |
A種型號(hào) (臺(tái)) | B種型號(hào) (臺(tái)) | ||
第一周 | 3 | 2 | 3960 |
第二周 | 5 | 4 | 7120 |
(1)求 A,B 兩種型號(hào)的空氣凈化器的銷(xiāo)售單價(jià);
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的空氣凈化器共30臺(tái),其中B型凈化器的進(jìn)貨量不超過(guò)A型的2倍.設(shè)購(gòu)進(jìn)A型空氣凈化器為x臺(tái),這30臺(tái)空氣凈化器的銷(xiāo)售總利潤(rùn)為y元.
①請(qǐng)寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
②該商店購(gòu)進(jìn)A型、B型凈化器各多少臺(tái),才能使銷(xiāo)售總利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】自行車(chē)旅行越來(lái)越受到人們的喜愛(ài),各種品牌的山地自行車(chē)相繼投放市場(chǎng),某車(chē)行經(jīng)營(yíng)的A型車(chē)去年2月份銷(xiāo)售總額為3.2萬(wàn)元,今年經(jīng)過(guò)改造升級(jí)后A型車(chē)每輛銷(xiāo)售價(jià)比去年增加400元,若今年2月份與去年2月份賣(mài)出的A型車(chē)數(shù)量相同,則今年2月份A型車(chē)銷(xiāo)售總額將比去年2月份銷(xiāo)售總額增加25%.
(1)求今年2月份A型車(chē)每輛銷(xiāo)售價(jià)多少元?
(2)該車(chē)行計(jì)劃今年3月份新進(jìn)一批A型車(chē)和B型車(chē)共50輛,且B型車(chē)的進(jìn)貨數(shù)量不超過(guò)A型車(chē)數(shù)量的2倍,A.B兩種型號(hào)車(chē)的進(jìn)貨和銷(xiāo)售價(jià)格如表,問(wèn)應(yīng)如何進(jìn)貨才能使這批車(chē)獲利最多?
A型車(chē) | B型車(chē) | |
進(jìn)貨價(jià)格(元/輛) | 1100 | 1400 |
銷(xiāo)售價(jià)格(元/輛) | 今年的銷(xiāo)售價(jià)格 | 2400 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面內(nèi),將一副直角三角板按如圖所示的方式擺放,其中三角形ABC為含60°角的直角三角板,三角形BDE為含45°角的直角三角板.
(1)如圖1,若點(diǎn)D在AB上,則∠EBC的度數(shù)為 ;
(2)如圖2,若∠EBC=170°,則∠α的度數(shù)為 ;
(3)如圖3,若∠EBC=118°,求∠α的度數(shù);
(4)如圖3,若0°<∠α<60°,求∠ABE-∠DBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形中,,對(duì)角線、交于點(diǎn),的平分線分別交、于點(diǎn)、,連接.
(l)求的度數(shù);
(2)若,求的面積;
(3)求.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】P是⊙O內(nèi)一點(diǎn),過(guò)點(diǎn)P作⊙O的任意一條弦AB,我們把PAPB的值稱(chēng)為點(diǎn)P關(guān)于⊙O的“冪值”
(1)⊙O的半徑為6,OP=4.
①如圖1,若點(diǎn)P恰為弦AB的中點(diǎn),則點(diǎn)P關(guān)于⊙O的“冪值”為_____;
②判斷當(dāng)弦AB的位置改變時(shí),點(diǎn)P關(guān)于⊙O的“冪值”是否為定值,若是定值,證明你的結(jié)論;若不是定值,求點(diǎn)P關(guān)于⊙0的“冪值”的取值范圍;
(2)若⊙O的半徑為r,OP=d,請(qǐng)參考(1)的思路,用含r、d的式子表示點(diǎn)P關(guān)于⊙O的“冪值”或“冪值”的取值范圍_____;
(3)在平面直角坐標(biāo)系xOy中,C(1,0),⊙C的半徑為3,若在直線y=x+b上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的“冪值”為6,請(qǐng)直接寫(xiě)出b的取值范圍_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com