【題目】如圖,已知∠ABM=30°,AB=20,C是射線BM上一點.
(1)在下列條件中,可以唯一確定BC長的是 ;(填寫所有符合條件的序號)
①AC=13;②tan∠ACB=;③△ABC的面積為126.
(2)在(1)的答案中,選擇一個作為條件,畫出示意圖,求BC的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在中, , , 、分別是、邊的中點.將繞點順時針旋轉(zhuǎn)角(),得到(如圖②).
().
()當(dāng)時, 為直角三角形.
()當(dāng)時,旋轉(zhuǎn)角.
()如圖③,在旋轉(zhuǎn)過程中,設(shè)與所在直線交于點,當(dāng)成為等腰三角形時,旋轉(zhuǎn)角或,其中正確的結(jié)論有:( ).
A. ()()() B. ()()() C. ()()() D. ()()()
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,BD為對角線,點P從A出發(fā),沿射線AB運動,連接PD,過點D作DE⊥PD,交直線BC于點E.
(1)當(dāng)點P在線段AB上時(如圖1),求證:BP+CE=BD;
(2)當(dāng)點P在線段AB的延長線上時(如圖2),猜想線段BP、CE、BD之間滿足的關(guān)系式,并加以證明;
(3)若直線PE分別交直線BD、CD于點M、N,PM=3,EN=4,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4.則下列四個結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△AED的周長是9.其中正確的結(jié)論是__(把你認為正確結(jié)論的序號都填上.)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①全等圖形的形狀相同、大小相等;②三邊對應(yīng)相等的兩個三角形全等;③全等三角形的對應(yīng)角相等;④全等三角形的周長、面積分別相等,其中正確的說法為( )
A.①②④B.①③④C.②③④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,在矩形ABCD中,AB=4,AD=10,在BC邊上是否存在點P,使∠APD=90°,若存在,請用直尺和圓規(guī)作出點P并求出BP的長.(保留作圖痕跡)
(2)如圖②,在△ABC中,∠ABC=60°,BC=12,AD是BC邊上的高,E、F分別為AB,AC的中點,當(dāng)AD=6時,BC邊上是否存在一點Q,使∠EQF=90°,求此時BQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊長,且滿足2a4+2b4+c4=2a2c2+2b2c2,則△ABC是( )
A. 等腰三角形 B. 等腰直角三角形
C. 直角三角形 D. 等腰三角形或直角三角形
【答案】B
【解析】解析:∵2a4+2b4+c4=2a2c2+2b2c2,∴4a4-4a2c2+c4+4b4-4b2c2+c4=0,
∴(2a2-c2)2+(2b2-c2)2=0,∴2a2-c2=0,2b2-c2=0,
∴c=2a,c=2b,
∴a=b,且a2+b2=c2,
∴△ABC為等腰直角三角形.
故選B.
【題型】單選題
【結(jié)束】
11
【題目】將圖1中陰影部分的小長方形變換到圖2的位置,你能根據(jù)兩個圖形的面積關(guān)系得到的數(shù)學(xué)公式是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《深圳都市報》報道,截止到2017年3月底,深圳共享單車注冊用戶量超千萬人,互聯(lián)網(wǎng)自行車日均使用量2590000人次,將2590000用科學(xué)記數(shù)法表示應(yīng)為
A.0. 259×107
B.2.59×106
C.29.5×105
D.259×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運算正確的是( 。
A.(a+1)2=a2+1B.(a-b)3(b-a)2=(a-b)5C.(﹣2ab2)3=8a3b6 D.2x3x2=x6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com