【題目】某商家獨家銷售具有地方特色的某種商品,每件進(jìn)價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x(元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y(件) | … | 450 | 400 | 300 | 250 | … |
(1)直接寫出y與x的函數(shù)關(guān)系式: .
(2)設(shè)一周的銷售利潤為S元,請求出S與x的函數(shù)關(guān)系式,并確定當(dāng)銷售單價在什么范圍內(nèi)變化時,一周的銷售利潤隨著銷售單價的增大而增大?
(3)雅安地震牽動億萬人民的心,商家決定將商品一周的銷售利潤全部寄往災(zāi)區(qū),在商家購進(jìn)該商品的貸款不超過10000元情況下,請你求出該商家最大捐款數(shù)額是多少元?
【答案】解:(1)y與x的函數(shù)關(guān)系式為:y=﹣10x+1000。
(2)由題意得,S=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000。
∵﹣10<0,∴函數(shù)圖象開口向下,對稱軸為x=70。
∴當(dāng)40≤x≤70時,銷售利潤隨著銷售單價的增大而增大。
(3)當(dāng)購進(jìn)該商品的貸款為10000元時,y=10000÷40=250(件),此時x=75。
由(2)得當(dāng)x≥70時,S隨x的增大而減小,
∴當(dāng)x=70時,銷售利潤最大,此時S=9000。
∴該商家最大捐款數(shù)額是9000元。
【解析】
試題(1)設(shè)y=kx+b,把點的坐標(biāo)代入解析式,求出k、b的值,即可得出函數(shù)解析式:
設(shè)y=kx+b,由題意得,,解得:。
∴y與x的函數(shù)關(guān)系式為:y=﹣10x+1000。
(2)根據(jù)利潤=(售價﹣進(jìn)價)×銷售量,列出函數(shù)關(guān)系式,繼而確定銷售利潤隨著銷售單價的增大而增大的銷售單價的范圍。
(3)根據(jù)購進(jìn)該商品的貸款不超過10000元,求出進(jìn)貨量,然后求最大銷售額即可。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】今年3月,某集團(tuán)隨機抽取所屬的m家商業(yè)連鎖店進(jìn)行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統(tǒng)計圖表.
評估成績分 | 評定等級 | 頻數(shù) |
A | 2 | |
B | b | |
C | 15 | |
D | 6 |
根據(jù)以上信息解答下列問題:
(1)求m,b的值;
(2)在扇形統(tǒng)計圖中,求B等級所在扇形的圓心角的大小;
(3)從評估成績不少于80分的連鎖店中,任選2家介紹營銷經(jīng)驗,用樹狀圖或列表法求其中至少有一家是A等級的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=ax+b和y=ax2+bx+c(a≠0)在同一個坐標(biāo)系中的圖象可能為( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC是等邊三角形,點P是BC上一動點(點P與點B、C不重合),過點P作PM∥AC交AB于M,PN∥AB交AC于N,連接BN、CM.
(1)求證:PM+PN=BC;
(2)在點P的位置變化過程中,BN=CM是否成立?試證明你的結(jié)論;
(3)如圖②,作ND∥BC交AB于D,則圖②成軸對稱圖形,類似地,請你在圖③中添加一條或幾條線段,使圖③成軸對稱圖形(畫出一種情形即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【本小題滿分11分】如圖,已知拋物線的頂點D的坐標(biāo)為(1,),且與x軸交于A、B兩點,與y軸交于C點,A點的坐標(biāo)為(4,0).P點是拋物線上的一個動點,且橫坐標(biāo)為m.
(l)求拋物線所對應(yīng)的二次函數(shù)的表達(dá)式;
(2)若動點P滿足∠PAO不大于45°,求P點的橫坐標(biāo)m的取值范圍;
(3)當(dāng)P點的橫坐標(biāo)時,過p點作y軸的垂線PQ,垂足為Q.問:是否存在P點,使∠QPO=∠BCO?若存在,請求出P點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)在Rt△ABC中,∠BAC=,D是BC的中點,E是AD的中點.過點A作AF∥BC交BE的延長線于點F.
(1)求證:△AEF≌△DEB;
(2)證明四邊形ADCF是菱形;
(3)若AC=4,AB=5,求菱形ADCFD 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=a(x+m)2的頂點坐標(biāo)為(﹣1,0),且過點A(﹣2,﹣).
(1)求這個二次函數(shù)的解析式;
(2)點B(2,﹣2)在這個函數(shù)圖象上嗎?
(3)你能通過左,右平移函數(shù)圖象,使它過點B嗎?若能,請寫出平移方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC 中,D 是 BC 邊的中點,E、F 分別在 AD 及其延長線上,CE∥BF,連接BE、CF.
(1)求證:△BDF ≌△CDE;
(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知二次函數(shù)的圖象經(jīng)過點(﹣2,8)和(﹣1,5),求這個二次函數(shù)的表達(dá)式;
(2)已知拋物線的頂點為(﹣1,﹣3),與y軸的交點為(0,﹣5),求這個拋物線相應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com