【題目】四邊形ABCD的對角線AC、BD的長分別為10厘米、6厘米,且ACBD互相垂直,順次連接四邊形ABCD四邊的中點E、F、G、H得四邊形EFGH,則四邊形EFGH的面積為_____平方厘米.

【答案】15

【解析】

利用三角形中位線定理可證明四邊形EFGH是矩形,然后求出矩形的兩鄰邊長即可求出面積.

解:如圖所示:

在△ABC中,E、F分別是ABBC的中點,

EF=AC=5厘米,EFAC,

在△ADC中,H、G分別是ADCD的中點,

HG=AC=5厘米,HGAC,

EFHG,EF=HG,

∴四邊形EFGH是平行四邊形,

在△ABD中,E、H分別是ABAD的中點,

EH=BD=3厘米,EHBD,

ACBD

EFEH,

∴四邊形EFGH是矩形,

∴四邊形EFGH的面積為:5×3=15平方厘米.

故答案為:15.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果∠A和∠B互補,且∠A>∠B,給出下列四個式子:①90°﹣B;②∠A﹣90°;A+∠B)A﹣B)其中表示∠B余角的式子有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=120°,C=80°.將△BMN沿著MN翻折,得到△FMN.若MFAD,F(xiàn)NDC,則∠F的度數(shù)為( 。

A. 70° B. 80° C. 90° D. 100°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學活動課上,小聰同學擺弄著自己剛購買的一套三角板,將兩塊直角三角板的直角頂點C疊放在一起,然后轉動三角板,在轉動過程中,請解決以下問題:

(1)如圖(1):當∠DCE=30°時,∠ACB+∠DCE=   ,若∠DCE為任意銳角時,你還能求出∠ACB∠DCE的數(shù)量關系嗎?若能,請求出;若不能,請說明理由.

(2)當轉動到圖(2)情況時,∠ACB∠DCE有怎樣的數(shù)量關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一張紙對折1次后,就得到2層;對折2次后,就得到4層;對折3次后,就得到8層;……,按照這樣對折下去.

(1)求將一張紙對折6次后,層數(shù)是多少?

(2)求將一張紙對折n次后,層數(shù)是多少(用含n的式子表示)?

(3)若一張紙的厚度均為0.5mm,求將該紙張對折2018次后的總的厚度是多少mm?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示的有理數(shù)為﹣6,點B表示的有理數(shù)為6,點P從點A出發(fā)以每秒4個單位長度的速度在數(shù)軸上由AB運動,當點P到達點B后立即返回,仍然以每秒4個單位長度的速度運動至點A停止運動,設運動時間為t(單位:秒).

(1)求t=1時點P表示的有理數(shù);

(2)求點P與點B重合時的t值;

(3)在點P沿數(shù)軸由點A到點B再回到點A的運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);

(4)當點P表示的有理數(shù)與原點的距離是2個單位長度時,請求出所有滿足條件的t值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家具商場計劃購進某種餐桌、餐椅進行銷售,有關信息如表:

原進價(元/張)

零售價(元/張)

成套售價(元/套)

餐桌

a

270

500

餐椅

a﹣110

70

已知用600元購進的餐桌數(shù)量與用160元購進的餐椅數(shù)量相同.

(1)求表中a的值;

(2)若該商場購進餐椅的數(shù)量是餐桌數(shù)量的5倍還多20張,且餐桌和餐椅的總數(shù)量不超過200張.該商場計劃將一半的餐桌成套(一張餐桌和四張餐椅配成一套)銷售,其余餐桌、餐椅以零售方式銷售.請問怎樣進貨,才能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】現(xiàn)有甲、乙兩個容器,分別裝有進水管和出水管,兩容器的進、出水速度不變,先打開乙容器的進水管,2分鐘時再打開甲容器的進水管,又過2分鐘關閉甲容器的進水管,再過4分鐘同時打開甲容器的進、出水管.直到12分鐘時,同時關閉兩容器的進、出水管.打開和關閉水管的時間忽略不計.容器中的水量y()與乙容器注水時間x()之間的關系如圖所示.

(1)求甲容器的進、出水速度;

(2)甲容器的進、出水管都關閉后,是否存在兩容器的水量相等?若存在,求出此時的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=4,AD=5,AD、AB、BC分別與⊙O相切于E、F、G三點,過點D作⊙O的切線交BC于點M,切點為N,則DM的長為(
A.
B.2
C.
D.

查看答案和解析>>

同步練習冊答案