【題目】如圖,將圓形紙片沿弦AB折疊后,圓弧恰好能經(jīng)過圓心O,⊙O的切線BC與AO延長線交于點C.
(1)若⊙O半徑為6cm,用扇形OAB圍成一個圓錐的側面,求這個圓錐的底面圓半徑.
(2)求證:AB=BC.
【答案】
(1)
解:設圓錐的底面圓半徑為r,
過O作OD⊥AB于E,交⊙O于D,連接OB,
有折疊可得 OE= OD,
∵OD=OA,
∴OE= OA,
∴在Rt△AOE中∠OAE=30°,則∠AOE=60°,
∵OD⊥AB,
∴∠AOB=2∠AOE=120°,
∴弧AB的長為: =4π,
∴2πr=4π,
∴r=2;
(2)
解:連接OB,
∵∠AOB=120°,
∴∠BOC=60°,
∵BC是⊙O的切線,
∴∠CBO=90°
∴∠C=30°,
∴∠OAE=∠C,
∴AB=BC.
;
解:連接OB,
∵∠AOB=120°,
∴∠BOC=60°,
∵BC是⊙O的切線,
∴∠CBO=90°
∴∠C=30°,
∴∠OAE=∠C,
∴AB=BC.
;解:連接OB,;
∵∠AOB=120°,
∴∠BOC=60°,
∵BC是⊙O的切線,
∴∠CBO=90°
∴∠C=30°,
∴∠OAE=∠C,
∴AB=BC.
【解析】(1)過O作OD⊥AB于E,交⊙O于D,根據(jù)題意OE= OA,得出∠OAE=30°,∠AOE=60°,從而求得∠AOB=2∠AOE=120°,根據(jù)弧長公式求得弧AB的長,然后根據(jù)圓錐的底面周長等于弧長得出2πr=4π,即可求得這個圓錐的底面圓半徑;(2)連接OB,根據(jù)切線的性質得出∠OBC=90°,根據(jù)三角形外角的性質得出∠C=30°,從而得出∠BAC=∠C,根據(jù)等角對等邊即可證得結論.
【考點精析】解答此題的關鍵在于理解切線的性質定理的相關知識,掌握切線的性質:1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑,以及對圓錐的相關計算的理解,了解圓錐側面展開圖是一個扇形,這個扇形的半徑稱為圓錐的母線;圓錐側面積S=πrl;V圓錐=1/3πR2h..
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.
(1)求證:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(﹣3,6),B(﹣9,﹣3),以原點O為位似中心,相似比為 ,把△ABO縮小,則點A的對應點A′的坐標是( )
A.(﹣1,2)
B.(﹣9,18)
C.(﹣9,18)或(9,﹣18)
D.(﹣1,2)或(1,﹣2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】電視節(jié)目“奔跑吧兄弟”播出后深受中小學生的喜愛,小剛想知道大家最喜歡哪位“兄弟”,于是在本校隨機抽取了一部分學生進行抽查(每人只能選一個自己最喜歡的“兄弟”),將調查結果進行了整理后繪制成如圖兩幅不完整的統(tǒng)計圖,請結合圖中提供的信息解答下列問題:
(1)本次被調查的學生有多少人.
(2)將兩幅統(tǒng)計圖補充完整.
(3)若小剛所在學校有2000名學生,請根據(jù)圖中信息,估計全校喜歡“Angelababy”的人數(shù).
(4)若從3名喜歡“李晨”的學生和2名喜歡“Angelababy”的學生中隨機抽取兩人參加文體活動,則兩人都是喜歡“李晨”的學生的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在直角梯形ABCD中,AD∥BC,∠DAB=90°,AD=1,BC=2.連接BD,把△ABD繞著點B逆時針旋轉90°得到△EBF,若點F剛好落在DA的延長線上,則∠C=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)sin45°+sin30°cos60°;
(2)+( )﹣1﹣2cos60°+(2﹣π)0 .
(3)+1﹣3tan230°+2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1)sin30°+3tan60°﹣cos245°.
(2)如圖,在Rt△ABC中,∠C=90°,∠ABC=75°,D在AC上,DC=6,∠DBC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】楊梅一上市,水果店的老板用1200元購進一批楊梅,很快售完;老板又用2500元購進第二批楊梅,所購件數(shù)是第一批的2倍,但進價比第一批每件多了5元.第一批楊梅每件進價多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的y與x的部分對應值如下表:
x | ﹣1 | 0 | 1 | 3 |
y | ﹣3 | 1 | 3 | 1 |
下列結論:①拋物線的開口向下;②其圖象的對稱軸為x=1;③當x<1時,函數(shù)值y隨x的增大而增大;④方程ax2+bx+c=0有一個根大于4,其中正確的結論有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com