【題目】某地區(qū)為綠化環(huán)境,計劃購買甲、乙兩種樹苗共計n棵.有關甲、乙兩種樹苗的信息如圖所示:
(1)當n=400時,如果購買甲、乙兩種樹苗共用27000元,那么甲、乙兩種樹苗各買了多少棵?
(2)實際購買這兩種樹苗的總費用恰好為27000元,其中甲種樹苗買了m棵.
①寫出m與n滿足的關系式;
②要使這批樹苗的成活率不低于92%,求n的最大值.
【答案】(1)甲種樹苗300棵,乙種樹苗100棵;(2)①m=3n-900;②n的最大值為375
【解析】分析:(1)、設甲種樹苗的數(shù)量為x棵,則乙種樹苗的數(shù)量為400-x棵,根據(jù)購買甲、乙兩種樹苗共用27000元可列方程求解即可;(2)、①根據(jù)總費用為27000元可列方程,得出m和n的函數(shù)關系式;②根據(jù)這批樹苗的成活率不低于92%可列出不等式求解.
詳解:(1)設甲種樹苗的數(shù)量為x棵,則乙種樹苗的數(shù)量為400-x棵,
60x+90(400-x)=27000, 解得x=300, 400-x=100.
答:甲種樹苗買了300棵,乙種樹苗買了100棵.
(2)①60m+90(n-m)=27000,即m=3n-900;
②90%m+95%(n-m)≥92%n, ∴3n-5m≥0, ∴3n-5(3n-900)≥0
∴n≤375, ∴n的最大值為375.
科目:初中數(shù)學 來源: 題型:
【題目】計算:
(1); (2) (x–2)2–(x+2)(x–2)
解方程組:(3) (4)
(5)化簡求值 (m-n)2-2(m2-n2)+(m+n)2.(其中m=2018,n= -)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3,現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如表:
(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)請你設計一種方案,不僅每小時支付的租金最少,又恰好能完成每小時的挖掘量?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標出了點B的對應點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
利用網(wǎng)格點和三角板畫圖或計算:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,E、F、G、H依次是各邊中點,O是形內(nèi)一點,若四邊形AEOH、四邊形BFOE、四邊形CGOF的面積分別為6、7、8,四邊形DHOG面積為(。
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年夏季,湖南省部分地區(qū)發(fā)生了罕見的旱災,連續(xù)幾個月無有效降水.為抗旱救災,駐湘某部計劃為駐地村民新建水渠3600米,為使水渠能盡快投入使用,實際工作效率是原計劃工作效率的1.8倍,結果提前20天完成修水渠任務.求實際每天修水渠多少米?(列方程解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的方格圖中,我們稱每個小正方形的頂點為“格點”,以格點為頂點的三角形叫做“格點三角形”,根據(jù)圖形,回答下列問題.
(1)圖中格點△A′B′C′是由格點△ABC通過怎樣的變換得到的?
(2)如果以直線a、b為坐標軸建立平面直角坐標系后,點A的坐標為(﹣3,4),請寫出格點△DEF各頂點的坐標,并求出△DEF的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com