【題目】如圖,在三角形紙片 ABC 中,AB=15cm,AC=9cm,BC=12cm, 現(xiàn)將邊 AC 沿過點 A 的直線折疊,使它落在 AB 邊上.若折痕交 BC 于點 D,點 C 落在點 E 處,你能求出 BD 的長嗎?請寫出求解過程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是正三角形ABC內(nèi)的一點,且PA=6,PB=8,PC=10.若將△PAC繞點A逆時針旋轉(zhuǎn)后,得到△P′AB.
(1)求點P與點P′之間的距離;
(2)求∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線AB交y軸于A點,交X軸于B點,A(0,6),B(6,0).點D是線段BO上一點,BN⊥AD交AD的延長線于點N.
(1)如圖,若OM∥BN交AD于點M.點O作0G⊥BN,交BN的延長線于點G,求證:AM=BG
(2)如圖,若∠ADO=67.5°,OM∥BN交AD于點M,交AB于點Q,求的值.
(3)如圖,若OC∥AB交BN的延長線于點C.請證明:∠CDN+2∠BDN=180°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經(jīng)過A(﹣1,0)、B(3,0)、C(0,3)三點,直線l是拋物線的對稱軸.
(1)求拋物線的函數(shù)關(guān)系式;
(2)設(shè)點P是直線l上的一個動點,當(dāng)△PAC的周長最小時,求點P的坐標(biāo);
(3)在直線l上是否存在點M,使△MAC為等腰三角形?若存在,直接寫出所有符合條件的點M的坐標(biāo);若不存在,請說明理由.
(4)若拋物線頂點為D,點Q為直線AC上一動點,當(dāng)△DOQ的周長最小時,求點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AB=5cm,BC=3cm,若動點P從點C開始,按C→A→B→C的路徑運(yùn)動,且速度為每秒1cm,設(shè)出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求△ABP的周長.
(2)問t滿足什么條件時,△BCP為直角三角形?
(3)另有一點Q,從點C開始,按C→B→A→C的路徑運(yùn)動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當(dāng)P、Q中有一點到達(dá)終點時,另一點也停止運(yùn)動.當(dāng)t為何值時,直線PQ把△ABC的周長分成相等的兩部分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長度為1個單位長度的小正方形組成的正方形中,點A、B、C在小正方形的頂點上.
在圖中畫出與關(guān)于直線l成軸對稱的;
三角形ABC的面積為______;
以AC為邊作與全等的三角形,則可作出______個三角形與全等;
在直線l上找一點P,使的長最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有x個黑球和y個白球,這些球除顏色外無其他差別.若從盒中隨機(jī)取一個球,它是黑球的概率是 ;若往盒中再放進(jìn)1個黑球,這時取得黑球的概率變?yōu)? .
(1)填空:x= , y=;
(2)小王和小林利用x個黑球和y個白球進(jìn)行摸球游戲.約定:從盒中隨機(jī)摸取一個,接著從剩下的球中再隨機(jī)摸取一個,若兩球顏色相同則小王勝,若顏色不同則小林勝.求兩個人獲勝的概率各是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一圓柱,其高為12cm,它的底面半徑為3cm,在圓柱下底面A處有一只螞蟻,它想得到上面B處的食物,則螞蟻經(jīng)過的最短距離為_________.(π取3)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com