【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn),∠AOB110°,∠BOCa.將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,連接OD

1)試說明△COD是等邊三角形;

2)當(dāng)a150°時(shí),OB3,OC4,試求OA的長(zhǎng).

【答案】1)見解析;(2OA5.

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得出OCOD,結(jié)合題意即可證得結(jié)論;

2)結(jié)合(1)的結(jié)論可求ADOB3COOD4,∠ADO90°,根據(jù)勾股定理可求OA的長(zhǎng).

解:證明:(1)∵將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC,

COCD,∠OCD60°,

∴△COD是等邊三角形.

2)∵將△BOC繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)60°得△ADC

∴△BOC≌△ADC,

∴∠ADC=∠BOC150°,ADOB3,

又∵△COD是等邊三角形,

∴∠ODC60°,ODOC4

∴∠ADO=∠ADC﹣∠ODC90°,

OA5

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,過點(diǎn)A3,4)的拋物線yax2+bx+4x軸交于點(diǎn)B(﹣1,0),與y軸交于點(diǎn)C,過點(diǎn)AADx軸于點(diǎn)D

1)求拋物線的解析式.

2)如圖1,點(diǎn)P是直線AB上方拋物線上的一個(gè)動(dòng)點(diǎn),連接PDAB于點(diǎn)Q,連接AP,當(dāng)SAQD2SAPQ時(shí),求點(diǎn)P的坐標(biāo).

3)如圖2G是線段OC上一個(gè)動(dòng)點(diǎn),連接DG,過點(diǎn)GGMDGAC于點(diǎn)M,過點(diǎn)M作射線MN,使∠NMG60°,交射線GD于點(diǎn)N;過點(diǎn)GGHMN,垂足為點(diǎn)H,連接BH.請(qǐng)直接寫出線段BH的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在△ABC中,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,CA上的動(dòng)點(diǎn),若△DEF∽△ABC(點(diǎn)D、E、F的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A、B、C),則稱△DEF△ABC的子三角形,如圖.

(1)已知:如圖1,△ABC是等邊三角形,點(diǎn)D,E,F(xiàn)分別是邊AB,BC,CA上動(dòng)點(diǎn),且AD=BE=CF.

求證:△DEF△ABC的子三角形.

(2)已知:如圖2,△DEF△ABC的子三角形,且AB=AC,∠A=90°,若BE=,求CFAD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=-x2+4x+5

(1)用配方法將y=-x2+4x+5化成y=axh2+k的形式;

(2)指出拋物線的開口方向、對(duì)稱軸和頂點(diǎn)坐標(biāo);

(3)若拋物線上有兩點(diǎn)Ax1,y1),B(x2,y2),如果x1>x2>2,試比較y1y2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知長(zhǎng)方形硬紙板ABCD的長(zhǎng)BC為40cm,寬CD為30cm,按如圖所示剪掉2個(gè)小正方形和2個(gè)小長(zhǎng)方形(即圖中陰影部分),將剩余部分折成一個(gè)有蓋的長(zhǎng)方體盒子,

設(shè)剪掉的小正方形邊長(zhǎng)為xcm.(紙板的厚度忽略不計(jì))

(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)

(2)若折成的長(zhǎng)方體盒子的表面積為950cm2,求該長(zhǎng)方體盒子的體積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某飛機(jī)著陸后滑行的距離y()關(guān)于著陸后滑行的時(shí)間x()的函數(shù)關(guān)系是y=﹣2x2+bx(b為常數(shù)).若該飛機(jī)著陸后滑行20秒才停下來,則該型飛機(jī)著陸后的滑行距離是_____米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°AC=3,AB=5,若以C為圓心,r為半徑作圓,那么:

1)當(dāng)直線AB⊙C相切時(shí),求r的取值范圍;

2)當(dāng)直線AB⊙C相離時(shí),求r的取值范圍;

3)當(dāng)直線AB⊙C相交時(shí),求r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,DAB邊上一點(diǎn),連接CD,ECD的中點(diǎn),連接BE并延長(zhǎng)至點(diǎn)F,使得EF=EB,連接DFAC于點(diǎn)G,連接CF,

1)求證:四邊形DBCF是平行四邊形

2)若∠A=30°,BC=4,CF=6,求CD的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,DEAB的垂直平分線,AD恰好平分∠BAC.若DE1,則BC的長(zhǎng)是_____

查看答案和解析>>

同步練習(xí)冊(cè)答案