如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在C、D之間有一點P,如果P點在C、D之間運動時,問∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化.若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?

.

 

【答案】

∠APB=∠PBD-∠PAC或∠APB=∠PAC-∠PBD

【解析】

試題分析:解:若P點在C、D之間運動時,則有∠APB=∠PAC+∠PBD.理由是:如圖4,過點P作PE∥l1,則∠APE=∠PAC,又因為l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APE+∠BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.

若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),則有兩種情形:

(1)如圖1,有結(jié)論:∠APB=∠PBD-∠PAC.理由是:過點P作PE∥l1,則∠APE=∠PAC,又因為l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB=∠PBD-∠PAC.

(2)如圖2,有結(jié)論:∠APB=∠PAC-∠PBD.理由是:過點P作PE∥l2,則∠BPE=∠PBD,又因為l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以∠APB=∠APE+∠BPE,即∠APB=∠PAC+∠PBD.

  

考點:幾何動點綜合題

點評:本題難度較大,主要考查學(xué)生結(jié)合平行線性質(zhì)及動點性質(zhì)綜合運用解題能力,動點為中考幾何大題常考題型,要求學(xué)生注意培養(yǎng)數(shù)形結(jié)合思想,靈活運用到考試中去。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

6、如圖,已知直線l1,l2,l3相交于點O,∠1=35°,∠2=25°,則∠3等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•郯城縣一模)如圖,已知直線l1∥l2∥l3∥l4,相鄰兩條平行直線間的距離都是1,如果正方形ABCD的四個頂點分別在四條直線上,則cosα=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2007•黔南州)如圖,已知直線l1∥l2,∠1=50°,那么∠2=
50°
50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖:已知直線l1∥l2,且l3、l4和l1、l2分別交于點A、B和點C、D,點P在AB上,設(shè)∠ADP=∠1,∠DPC=∠2,∠BCP=∠3.
(1)探究∠1、∠2、∠3之間的關(guān)系,并說明你的結(jié)論的正確性.
(2)若點P在A、B兩點之間運動時(點P和A、B不重合),∠1、∠2、∠3 之間的關(guān)系
不會
不會
發(fā)生變化(填會或不會)
(3)如果點P在A、B兩點外側(cè)運動時,(點P和A、B不重合)
①當點P在射線AM上時,猜想∠1、∠2、∠3之間的關(guān)系為
∠2=∠3-∠1
∠2=∠3-∠1

②當點P在射線BN上時,猜想∠1、∠2、∠3之間的關(guān)系為
∠3=∠1-∠2
∠3=∠1-∠2
(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1∥l2,直線l3和直線l1、l2交于點C和D,在直線l3上有點P(點P與點C、D不重合),點A在直線l1上,點B在直線l2上.
(1)如果點P在C、D之間運動時,試說明∠PAC+∠PBD=∠APB;
(2)如果點P在直線l1的上方運動時,試探索∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
(3)如果點P在直線l2的下方運動時,∠PAC,∠APB,∠PBD之間的關(guān)系又是如何?
∠PAC=∠PBD+∠APB
∠PAC=∠PBD+∠APB
(直接寫出結(jié)論)

查看答案和解析>>

同步練習(xí)冊答案