三角形的定義是
由不在同一條直線上的三條線段首尾順次相接所組成的圖形
由不在同一條直線上的三條線段首尾順次相接所組成的圖形
分析:利用三角形的概念:由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形得出即可.
解答:解:三角形的定義是:由不在同一條直線上的三條線段首尾順次相接所組成的圖形.
故答案為:由不在同一條直線上的三條線段首尾順次相接所組成的圖形.
點評:此題主要考查了三角形的定義,正確把握定義是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點)上,落點記為E,這時折痕與邊BC或者邊CD(含端點)交于F,然后展開鋪平,則以B、E、F為頂點的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個“折痕△BEF”是一個
 
三角形
(2)如圖①,在矩形ABCD中,AB=2,BC=4,當(dāng)它的“折痕△BEF”的頂點E位于AD的中點時,畫出這個“折痕△BEF”,并求出點F的坐標;
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時點E的坐標?若不存在,為什么?
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•陜西)如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點)上,落點記為E,這時折痕與邊BC或者邊CD(含端點)交于F,然后展開鋪平,則以B、E、F為頂點的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個“折痕△BEF”是一個  三角形
(2)如圖②、在矩形ABCD中,AB=2,BC=4,,當(dāng)它的“折痕△BEF”的頂點E位于AD的中點時,畫出這個“折痕△BEF”,并求出點F的坐標;
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時點E的坐標?若不存在,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(陜西卷)數(shù)學(xué)解析版 題型:解答題

(2011•陜西)如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點)上,落點記為E,這時折痕與邊BC或者邊CD(含端點)交于F,然后展開鋪平,則以B、E、F為頂點的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個“折痕△BEF”是一個  三角形
(2)如圖②、在矩形ABCD中,AB=2,BC=4,,當(dāng)它的“折痕△BEF”的頂點E位于AD的中點時,畫出這個“折痕△BEF”,并求出點F的坐標;
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時點E的坐標?若不存在,為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年天津市寶坻區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖①,在矩形ABCD中,將矩形折疊,使B落在邊AD(含端點)上,落點記為E,這時折痕與邊BC或者邊CD(含端點)交于F,然后展開鋪平,則以B、E、F為頂點的三角形△BEF稱為矩形ABCD的“折痕三角形”
(1)由“折痕三角形”的定義可知,矩形ABCD的任意一個“折痕△BEF”是一個______三角形
(2)如圖①、在矩形ABCD中,AB=2,BC=4,當(dāng)它的“折痕△BEF”的頂點E位于AD的中點時,畫出這個“折痕△BEF”,并求出點F的坐標;
(3)如圖③,在矩形ABCD中,AB=2,BC=4,該矩形是否存在面積最大的“折痕△BEF”?若存在,說明理由,并求出此時點E的坐標?若不存在,為什么?

查看答案和解析>>

同步練習(xí)冊答案