如圖,點D、B的坐標(biāo)分別為(0,0),(3,0)將△0AB繞O點按逆時針方向旋轉(zhuǎn)90°到△OA′B′的位置
(1)畫出△OA′B′;
(2)寫出點A的坐標(biāo);
(3)求四邊形OA′B′B的面積.

【答案】分析:(1)根據(jù)旋轉(zhuǎn)角度、旋轉(zhuǎn)中心、旋轉(zhuǎn)方向可確定各點的對應(yīng)點,順次連接即可得出.
(2)根據(jù)圖形即可寫出A點的坐標(biāo).
(3)用間接法求解四邊形OA′B′B的面積即可.
解答:解:(1)所畫圖形如下所示:


(2)點A的坐標(biāo)為(2,4);…(4分)

(3)連接BB′,
∴S四邊形OA′B′B=S△OA′B′+S△OB′B==.…(7分)
點評:本題考查旋轉(zhuǎn)作圖及四邊形的面積求法,屬于綜合題,但是難度不大,關(guān)鍵還是根據(jù)旋轉(zhuǎn)的定義準(zhǔn)確作出圖形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x-m)2+n的頂點在線段AB上運動,與x軸交于C、D兩點(C在D的左側(cè)),點C的橫坐標(biāo)最小值為-3,則點D的橫坐標(biāo)最大值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,點A、B的坐標(biāo)分別為(1,2)、(4,0),將△AOB沿x軸向右平移,得到△CDE,已知DB=1,則點C的坐標(biāo)為
(4,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點D、B的坐標(biāo)分別為(0,0),(3,0)將△0AB繞O點按逆時針方向旋轉(zhuǎn)90°到精英家教網(wǎng)△OA′B′的位置
(1)畫出△OA′B′;
(2)寫出點A的坐標(biāo);
(3)求四邊形OA′B′B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•德惠市一模)如圖,點A、B的坐標(biāo)分別為(1,0)、(0,1),點P是第一象限內(nèi)直線y=-x+3上的一個動點,當(dāng)點P的橫坐標(biāo)逐漸增大時,四邊形OAPB的面積(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點O、B的坐標(biāo)分別為(0,0)(3,0),將△OAB繞O點按逆時針方向旋轉(zhuǎn)90°得到△OA′B′.
(1)畫出△OA′B′;
(2)寫出點A′、B′的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案