【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列結(jié)論:①abc>0;b24ac<0;4a+c>2b;(a+c)2>b2;x(ax+b)ab其中正確結(jié)論的是___.

A. ①②⑤ B. ②③④ C. ①③⑤ D. ③④⑤

【答案】C

【解析】分析:根據(jù)拋物線的開口方向確定a的符號(hào),與y軸的交點(diǎn)確定c的符號(hào),對(duì)稱軸在y軸的左側(cè)確定b的符號(hào);②由拋物線與x軸的交點(diǎn)的個(gè)數(shù)確定;③判斷當(dāng)x=-2時(shí)的函數(shù)值;判斷當(dāng)x=-1時(shí),acb的關(guān)系,注意b的符號(hào);⑤當(dāng)x=-1時(shí),函數(shù)取最大值,所以ax2bxcabc.

詳解:因?yàn)閽佄锞開口向下,所以a<0;

因?yàn)閽佄锞與y軸交點(diǎn)在y軸的正半軸上,所以c>0;

因?yàn)閷?duì)稱軸x=-1,b=2aa<0,所以b<0,

所以abc>0.

則①正確;

因?yàn)閽佄锞與x軸有兩個(gè)交點(diǎn),所以b24ac>0.

則②錯(cuò)誤;

因?yàn)閷?duì)稱軸x=-1,所以坐標(biāo)(-2,0)的點(diǎn)與(0,0)關(guān)于x=-1對(duì)稱.

所以當(dāng)x=-2時(shí),(-2)2a+(-2)bc>,4a-2bc>0,所以4ac>2b.

則③正確;

因?yàn)楫?dāng)x=-1時(shí),abc>0,所以acb,但b<0,則不能確定(ac)2b2的大小.

則④不正確;

當(dāng)x=-1時(shí),y有最大值是yabc

所以ax2bxcabc,x(axb)≤ab.

則⑤正確.

故選C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,小明同學(xué)用自制的直角三角形紙板DEF測(cè)量樹AB的高度,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點(diǎn)B在同一直線上,已知紙板的兩條直角邊DE=40cm,EF=20cm,測(cè)得邊DF離地面的高度AC=1.5m,CD=8m,求樹AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個(gè)正方體的平面展開圖,標(biāo)注了字母M的是正方體的正面,如果正方體的左面與右面標(biāo)注的式子相等.

1)求x的值;

2)求正方體的上面和底面的數(shù)字和.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對(duì)市民最關(guān)心的四類生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限選一項(xiàng)),下面是部分四類生活信息關(guān)注度統(tǒng)計(jì)圖表,請(qǐng)根據(jù)圖中提供的信息解答下列問題:

(1)本次參與調(diào)查的人數(shù)有______ 人;

(2)關(guān)注城市醫(yī)療信息的有______ 人,并補(bǔ)全條形統(tǒng)計(jì)圖;

(3)扇形統(tǒng)計(jì)圖中,D部分的圓心角是______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀材料:

如圖,若點(diǎn)B把線段分成兩條長(zhǎng)度相等的線段ABBC,則點(diǎn)B叫做線段AC的中點(diǎn).

回答問題:

(1)如圖,在數(shù)軸上,點(diǎn)A所表示的數(shù)是﹣2,點(diǎn)B所表示的數(shù)是0,點(diǎn)C所表示的數(shù)是3.

A是線段DB的中點(diǎn),則點(diǎn)D表示的數(shù)是   

E是線段AC的中點(diǎn),求點(diǎn)E表示的數(shù).

(2)在數(shù)軸上,若點(diǎn)M表示的數(shù)是m,點(diǎn)N所表示的數(shù)是n,點(diǎn)P是線段MN的中點(diǎn).

若點(diǎn)P表示的數(shù)是1,則m、n可能的值是   (填寫符合要求的序號(hào));

im=0,n=2;(iim=﹣5,n=7;(iiim=0.5,n=1.5;(ivm=﹣1,n=2

直接用含m、n的代數(shù)式表示點(diǎn)P表示的數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11·漳州)(滿分8分)漳州市某中學(xué)對(duì)全校學(xué)生進(jìn)行文明禮儀知識(shí)測(cè)試,為了解測(cè)試結(jié)果,隨機(jī)抽取部分學(xué)生的成績(jī)進(jìn)行分析,將成績(jī)分為三個(gè)等級(jí):不合格、一般、優(yōu)秀,并繪制成如下兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)你根據(jù)圖中所給的信息解答下列問題:

1)請(qǐng)將以上兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)若一般優(yōu)秀均被視為達(dá)標(biāo)成績(jī),則該校被抽取的學(xué)生中有_ ▲ 人達(dá)標(biāo);

3)若該校學(xué)生有1200人,請(qǐng)你估計(jì)此次測(cè)試中,全校達(dá)標(biāo)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】身高1.65米的兵兵在建筑物前放風(fēng)箏,風(fēng)箏不小心掛在了樹上.在如圖所示的平面圖形中,矩形CDEF代表建筑物,兵兵位于建筑物前點(diǎn)B處,風(fēng)箏掛在建筑物上方的樹枝點(diǎn)G處(點(diǎn)G在FE的延長(zhǎng)線上).經(jīng)測(cè)量,兵兵與建筑物的距離BC=5米,建筑物底部寬FC=7米,風(fēng)箏所在點(diǎn)G與建筑物頂點(diǎn)D及風(fēng)箏線在手中的點(diǎn)A在同一條直線上,點(diǎn)A距地面的高度AB=1.4米,風(fēng)箏線與水平線夾角為37°.

(1)求風(fēng)箏距地面的高度GF;

(2)在建筑物后面有長(zhǎng)5米的梯子MN,梯腳M在距墻3米處固定擺放,通過計(jì)算說明:若兵兵充分利用梯子和一根米長(zhǎng)的竹竿能否觸到掛在樹上的風(fēng)箏?

(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的邊長(zhǎng)為4,邊OA,OC分別在x軸,y軸的正半軸上,把正方形OABC的內(nèi)部及邊上,橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為好點(diǎn).點(diǎn)P為拋物線的頂點(diǎn).

1)當(dāng)時(shí),求該拋物線下方(包括邊界)的好點(diǎn)個(gè)數(shù).

2)當(dāng)時(shí),求該拋物線上的好點(diǎn)坐標(biāo).

3)若點(diǎn)P在正方形OABC內(nèi)部,該拋物線下方(包括邊界)恰好存在8個(gè)好點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年是我們偉大祖國建國70周年,各種歡慶用品在網(wǎng)上熱銷.某網(wǎng)店銷售甲、乙兩種紀(jì)念商品,甲種商品每件進(jìn)價(jià)150元,可獲利潤(rùn)40元;乙種商品每件進(jìn)價(jià)100元,可獲利潤(rùn)30元.由于這兩種商品特別暢銷,網(wǎng)店老板計(jì)劃再購進(jìn)兩種商品共100件,其中乙種商品不超過36件.

1)若購進(jìn)這100件商品的費(fèi)用不得超過13700元,求共有幾種進(jìn)貨方案?

2)在(1)的條件下,該網(wǎng)店在71建黨節(jié)當(dāng)天對(duì)甲種商品以每件優(yōu)惠m0m20)元的價(jià)格進(jìn)行優(yōu)惠促銷活動(dòng),乙種商品價(jià)格不變,那么該網(wǎng)店應(yīng)如何調(diào)整進(jìn)貨方案才能獲得最大利潤(rùn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案