【題目】駱駝被稱為沙漠之舟,它的體溫隨時(shí)間的變化而發(fā)生較大變化,其體溫()與時(shí)間(小時(shí))之間的關(guān)系如圖1所示.

小清同學(xué)根據(jù)圖1繪制了圖2,則圖2中的變量有可能表示的是( ).

A.駱駝在時(shí)刻的體溫與0時(shí)體溫的絕對(duì)差(即差的絕對(duì)值)

B.駱駝從0時(shí)到時(shí)刻之間的最高體溫與當(dāng)日最低體溫的差

C.駱駝在時(shí)刻的體溫與當(dāng)日平均體溫的絕對(duì)差

D.駱駝從0時(shí)到時(shí)刻之間的體溫最大值與最小值的差

【答案】B

【解析】

根據(jù)時(shí)間和體溫的變化,將時(shí)間分為3段:0-4,4-8,8-1616-24,分別觀察每段中的溫差,由此即可求出答案.

解:觀察可得從0時(shí)到4時(shí),溫差隨時(shí)間的增大而增大,在4時(shí)達(dá)到最大,是2℃;再到8時(shí),這段時(shí)間的最高溫度是37℃,最低是35℃,溫差不變,從8時(shí)開(kāi)始,最高溫度變大,最低溫度不變是35℃,溫差變大,達(dá)到3℃,從16時(shí)開(kāi)始體溫下降,溫差不變.則圖2中的變量有可能表示的是駱駝從0時(shí)到時(shí)刻之間的最高體溫與當(dāng)日最低體溫的差.

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,,的直徑,點(diǎn)上,連接,

1)求證:平分;

2)如圖2,連接,點(diǎn)上,連接,交于點(diǎn),求證:;

3)在(2)的條件下,點(diǎn)上,連接,,交于點(diǎn),若,,求線段的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知∠ACB90°,∠A30°,BC6D為斜邊AB上一點(diǎn),以CD、CB為邊作平行四邊形CDEB,當(dāng)AD_____時(shí),平行四邊形CDEB為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.在RtOAB中,∠OAB=90°,∠BOA=30°,OA=2,若以O為坐標(biāo)原點(diǎn),OA所在直線為x軸,建立如圖所示的平面直角坐標(biāo)系,點(diǎn)B在第一象限內(nèi),將RtOAB沿OB折疊后,點(diǎn)A落在第一象限內(nèi)的點(diǎn)C處.

1)求經(jīng)過(guò)點(diǎn)O,CA三點(diǎn)的拋物線的解析式.

2)若點(diǎn)M是拋物線上一點(diǎn),且位于線段OC的上方,連接MO、MC,問(wèn):點(diǎn)M位于何處時(shí)三角形MOC的面積最大?并求出三角形MOC的最大面積.

3)拋物線上是否存在一點(diǎn)P,使∠OAP=BOC?若存在,請(qǐng)求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一只拉桿式旅行箱(圖1),其側(cè)面示意圖如圖2所示,已知箱體長(zhǎng)AB=50cm,拉桿BC的伸長(zhǎng)距離最大時(shí)可達(dá)35cm,點(diǎn)A,B,C在同一條直線上,在箱體底端裝有圓形的滾筒輪⊙A,⊙A與水平地面相切于點(diǎn)D,在拉桿伸長(zhǎng)到最大的情況下,當(dāng)點(diǎn)B距離水平地面34cm時(shí),點(diǎn)C到水平地面的距離CE55cm.設(shè)AF MN.

1)求⊙A的半徑.

2)當(dāng)人的手自然下垂拉旅行箱時(shí),人感到較為舒服,某人將手自然下垂在C端拉旅行箱時(shí),CE76cm,∠CAF=64°,求此時(shí)拉桿BC的伸長(zhǎng)距離(結(jié)果精確到1cm,參考數(shù)據(jù):sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,長(zhǎng)度為6千米的國(guó)道兩側(cè)有,兩個(gè)城鎮(zhèn),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,連接點(diǎn)為,其中、之間的距離為2千米,、之間的距離為1千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為2.3千米,、之間的鄉(xiāng)鎮(zhèn)公路長(zhǎng)度為3.2千米,為了發(fā)展鄉(xiāng)鎮(zhèn)經(jīng)濟(jì),方便兩個(gè)城鎮(zhèn)的物資輸送,現(xiàn)需要在國(guó)道上修建一個(gè)物流基地,設(shè)、之間的距離為千米,物流基地沿公路到兩個(gè)城鎮(zhèn)的距離之和為干米,以下是對(duì)函數(shù)隨自變量的變化規(guī)律進(jìn)行的探究,請(qǐng)補(bǔ)充完整.

1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到的幾組值,如下表:

/千米

0

1.0

2.0

3.0

4.0

5.0

6.0

/千米

10.5

8.5

6.5

10.5

12.5

2)如圖2,建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象.

3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:

①若要使物流基地沿公路到、兩個(gè)城鎮(zhèn)的距離之和最小,則物流基地應(yīng)該修建在何處?(寫(xiě)出所有滿足條件的位置)

答:__________

②如右圖,有四個(gè)城鎮(zhèn)、、分別位于國(guó)道兩側(cè),從城鎮(zhèn)到公路分別有鄉(xiāng)鎮(zhèn)公路連接,若要在國(guó)道上修建一個(gè)物流基地,使得沿公路到、、的距離之和最小,則物流基地應(yīng)該修建在何處?(寫(xiě)出所有滿足條件的位置)

答:__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠C=90°,ADDB,點(diǎn)EAB的中點(diǎn),DEBC

1)求證:BD平分∠ABC;

2)連接EC,若∠A=30°,DC,求EC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)上的一點(diǎn),在同側(cè)作正方形,正方形分別為對(duì)角線的中點(diǎn),連結(jié)當(dāng)點(diǎn)沿著線段由點(diǎn)向點(diǎn)方向上移動(dòng)時(shí),四邊形的面積變化情況為( )

A.不變B.先減小后增大

C.先增大后減小D.一直減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線yx+2x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線yax2+bx+c的對(duì)稱軸是x=﹣且經(jīng)過(guò)A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B

1直接寫(xiě)出點(diǎn)B的坐標(biāo);求拋物線解析式.

2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

3)拋物線上有一點(diǎn)M,過(guò)點(diǎn)MMN垂直x軸于點(diǎn)N,使得以點(diǎn)A、MN為頂點(diǎn)的三角形與△ABC相似,直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案