【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.
【答案】(1)證明見解析;(2) 2cm.
【解析】試題分析:(1)根據(jù)同角的余角相等可得∠BCE=∠CAD,再由全等三角形的判定定理AAS即可判定△ADC≌△CEB;(2)利用(1)中的全等三角形的對應(yīng)邊相等得到:AD=CE=5cm,CD=BE.則根據(jù)圖中相關(guān)線段的和差關(guān)系得到BE=AD-DE,即可求得BE的長度.
試題解析:(1)證明:如圖,∵AD⊥CE,∠ACB=90°,
∴∠ADC=∠ACB=90°,
∴∠BCE=∠CAD(同角的余角相等).
在△ADC與△CEB中,
,
∴△ADC≌△CEB(AAS);
(2)由(1)知,△ADC≌△CEB,則AD=CE=5cm,CD=BE.
如圖,∵CD=CE﹣DE,
∴BE=AD﹣DE=5﹣3=2(cm),即BE的長度是2cm.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)5次數(shù)學(xué)小測驗(yàn)的成績分別為(單位:分):90,85,90,95,100,則該同學(xué)這5次成績的眾數(shù)是( 。
A.90 分B.85 分C.95 分D.100 分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小組7位學(xué)生的中考體育測試成績(滿分30分)依次為27,30,29,27,30,28,30.則這組數(shù)據(jù)的眾數(shù)與中位數(shù)分別是( )
A.30,27
B.30,29
C.29,30
D.30,28
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)(2,﹣1)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)是 _________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ΔABC中,AB>BC,AB=AC,DE是AB的垂直平分線,垂足為D點(diǎn),
交AC于點(diǎn)E.
(1)若∠ABE=38°,求∠EBC的度數(shù);
(2)若ΔABC的周長為36cm,一邊為13cm,求ΔBCE的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠ACB=2∠B,∠BAC的平分線AO交BC于點(diǎn)D,點(diǎn)H為AO上一動點(diǎn),過點(diǎn)H作直線l⊥AO于H,分別交直線AB、AC、BC、于點(diǎn)N、E、M.
(1)當(dāng)直線l經(jīng)過點(diǎn)C時(如圖2),求證:BN=CD;
(2)當(dāng)M是BC中點(diǎn)時,寫出CE和CD之間的等量關(guān)系,并加以證明;
(3)請直接寫出BN、CE、CD之間的等量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長方形的一邊長為2a+b,另一邊比它大a-b,則周長為( )
A. 10a+2b B. 5a+b C. 7a+b D. 10a-b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com