【題目】已知,關于,的方程組的解滿足,.
(1)求的取值范圍;
(2)化簡;
(3)若,求的取值范圍.
【答案】(1)a的取值范圍是<a<2;
(2)|a2||a+1|=2a+1;
(3)m的取值范圍是5<m<5.
【解析】
(1)把a看做已知數表示出方程組的解,根據x≥0,y<0,求出a的范圍即可;
(2)根據(1)中的取值可解答;
(3)先根據冪的性質將已知變形得:x+2y=m,再將方程組化為x+2y的形式可得結論.
(1)解方程組,得:,
∵x≥0,y<0,
∴,
解不等式①,得:a>,
解不等式②,得:a<2,
∴a的取值范圍是<a<2;
(2)∵<a<2,
∴|a2||a+1|=2a(a+1)=2a+1;
(3)3x9y=3m,
3x(32)y=3m,
3x+2y=3m,
x+2y=m,
∵,
②①得:x+2y=4a3,
即m=4a3,
∵a的取值范圍是<a<2,
2<4a<8,
5<4a3<5,
∴m的取值范圍是5<m<5.
科目:初中數學 來源: 題型:
【題目】操作題
(1)如圖①所示是一個長為2a,寬為2b的矩形,若把此圖沿圖中虛線用剪刀均分為四塊小長方形,然后按圖②的形狀拼成一個正方形,請問:這兩個圖形的 不變.圖②中陰影部分的面積用含a、b的代數式表示為_________________;
(2)由(1)的探索中,可得到的結論是:在周長一定的矩形中,___________時,面積最大;
(3)若一矩形的周長為36 cm,則當邊長為多少時,該圖形的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)把數軸補充完整.
(2)在數軸上表示下列各數.
(3)用“<”連接起來. .
(4)﹣|﹣2|與﹣4之間的距離是 .
3,﹣4,﹣(﹣1.5),﹣|﹣2|
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,BC的垂直平分線EF交∠ABC的平分線BD于E,如果∠BAC=60°,∠ACE=24°,那么∠BCE的大小是( 。
A. 24° B. 30° C. 32° D. 36°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖,點A,B,C,D在一條直線上,填寫下列空格:
∵AE∥BF(已知)
∴∠E=∠1(______________________)
∵∠E=∠F(已知〉
∴∠_____=∠F(________________)
∴________∥_________(________________________)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】綜合與實踐
問題情境
在綜合實踐課上,老師讓同學們“以三角形的旋轉”為主題進行數學活動,如圖(1),在三角形紙片ABC中,AB=AC,∠B=∠C=α.
操作發(fā)現(xiàn)
(1)創(chuàng)新小組將圖(1)中的△ABC以點B為旋轉中心,逆時針旋轉角度α,得到△DBE,再將△ABC以點A為旋轉中心,順時針旋轉角度α,得到△AFG,連接DF,得到圖(2),則四邊形AFDE的形狀是 .
(2)實踐小組將圖(1)中的△ABC以點B為旋轉中心,逆時針逆轉90°,得到△DBE,再將△ABC以點A為旋轉中心,順時針旋轉90°,得到△AFG,連接DF、DG、AE,得到圖(3),發(fā)現(xiàn)四邊形AFDB為正方形,請你證明這個結論.
拓展探索
(3)請你在實踐小組操作的基礎上,再寫出圖(3)中的一個特殊四邊形,并證明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,AD是⊙O的弦,點F是DA延長線上的一點,過⊙O上一點C作⊙O的切線交DF于點E,CE⊥DF.
(1)求證:AC平分∠FAB;
(2)若AE=1,CE=2,求⊙O的半徑.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】現(xiàn)有190張鐵皮做盒子,每張鐵皮可做8個盒身或22個盒底,一個盒身與兩個盒底配成一個完整的盒子,(一張鐵皮只能生產一種產品)
(1)向用多少張鐵皮做盒身,多少張鐵皮做盒底,可以正好用完190張鐵皮并制成一批完整的盒子?
(2)這批盒子一共有多少個?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一張矩形紙板按圖中虛線裁剪成九塊,其中有兩塊是邊長都為的大正方形,兩塊是邊長都為的小正方形,五塊是長為、寬為的全等小矩形,且> .(以上長度單位:cm)
(1)觀察圖形,可以發(fā)現(xiàn)代數式可以因式分解為 ;
(2)若每塊小矩形的面積為10,四個正方形的面積和為58,試求圖中所有裁剪線(虛線部分)長之和.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com