(11·肇慶)已知兩圓的半徑分別為1和3.若兩圓相切,則兩圓的圓心距為_(kāi)_______.
4或2
由兩圓相切,可從內(nèi)切與外切去分析,又由兩圓的半徑分別為1和3,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系即可求得兩圓的圓心距.
解:∵兩圓的半徑分別為1和3,
若兩圓內(nèi)切,則兩圓的圓心距為:3-1=2;
若兩圓外切,則兩圓的圓心距為:3+1=4;
∴兩圓的圓心距為4或2.
故答案為:4或2.
此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是注意掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題


繞側(cè)面一周,再回到點(diǎn)的最短的路線長(zhǎng)是             

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(11·孝感)(滿分10分)如圖,等邊△ABC內(nèi)接于⊙O,P是上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連AP、BP,過(guò)點(diǎn)C作CM∥BP交的延長(zhǎng)線于點(diǎn)M.
(1)填空:∠APC=______度,∠BPC=_______度;(2分)
(2)求證:△ACM≌△BCP;(4分)
(3)若PA=1,PB=2,求梯形PBCM的面積.(4分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形ABCD中,AB=4,以點(diǎn)B為圓心,BA為半徑畫(huà)弧交BC于點(diǎn)E,以點(diǎn)O為圓心的⊙O與弧,邊AD,DC都相切.把扇形BAE作一個(gè)圓錐的側(cè)面,該圓錐的底面圓恰好是⊙O,則AD的長(zhǎng)為(     )
A.4B.C.D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分9分)已知⊙與⊙相交于、兩點(diǎn),點(diǎn)在⊙上,為⊙上一點(diǎn)(不與,重合),直線與⊙交于另一點(diǎn)。
(1)如圖(8),若是⊙的直徑,求證:;
(2)如圖(9),若是⊙外一點(diǎn),求證:;
(3)如圖(10),若是⊙內(nèi)一點(diǎn),判斷(2)中的結(jié)論是否成立。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖1,在正方形鐵皮上剪下一個(gè)扇形和一個(gè)半徑為1cm的圓形,使之恰好圍成
圖2所示的一個(gè)圓錐,則圓錐的高為【   】
        

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(11·柳州)如圖,⊙O的半徑為5,直徑ABCD,以B為圓心,BC長(zhǎng)為半徑作,則圍成的新月形ACED(陰影部分)的面積為_     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,⊙O的直徑AB與弦CD(不是直徑)相交于點(diǎn)E,且CE=DE,過(guò)點(diǎn)B作CD得平行線AD延長(zhǎng)線于點(diǎn)F.
(1)求證:BF是⊙O的切線;
(2)連接BC,若⊙O的半徑為4,sin∠BCD=,求CD的長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分8分)如圖,已知AB是⊙O的弦,OB=2,∠B=30°,

C是弦AB上的任意一點(diǎn)(不與點(diǎn)A、B重合),連接CO并延長(zhǎng)CO交
于⊙O于點(diǎn)D,連接AD.
(1)弦長(zhǎng)AB等于 ▲ (結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長(zhǎng)度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、
C、O為頂點(diǎn)的三角形相似?請(qǐng)寫(xiě)出解答過(guò)程.

查看答案和解析>>

同步練習(xí)冊(cè)答案