【題目】分如圖,在ABCD中,點(diǎn)E、F分別是AD、BC的中點(diǎn),分別連接BE、DF、BD.
(1)求證:△AEB≌△CFD;
(2)若四邊形EBFD是菱形,求∠ABD的度數(shù).
【答案】
(1)證明:∵四邊形ABCD是平行四邊形,
∴∠A=∠C,AD=BC,AB=CD.
∵點(diǎn)E、F分別是AD、BC的中點(diǎn),
∴AE= AD,F(xiàn)C= BC.
∴AE=CF.
在△AEB與△CFD中,
,
∴△AEB≌△CFD(SAS)
(2)解:∵四邊形EBFD是菱形,
∴BE=DE.
∴∠EBD=∠EDB.
∵AE=DE,
∴BE=AE.
∴∠A=∠ABE.
∵∠EBD+∠EDB+∠A+∠ABE=180°,
∴∠ABD=∠ABE+∠EBD= ×180°=90°
【解析】(1)利用平行四邊形的性質(zhì)得到對(duì)邊相等,對(duì)角相等,結(jié)合已知的“中點(diǎn)”條件,推出△AEB≌△CFD;(2)利用菱形的性質(zhì),鄰邊相等,再結(jié)合中點(diǎn)條件,得出AE=DE=BE,利用”一邊上的中線等于這邊的一半的三角形是直角三角形“得出∠ABD=90°.
【考點(diǎn)精析】通過靈活運(yùn)用平行四邊形的性質(zhì),掌握平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,購(gòu)買“黃金1號(hào)”王米種子,所付款金額y元與購(gòu)買量x(千克)之間的函數(shù)圖象由線段OA和射線AB組成,則購(gòu)買1千克“黃金1號(hào)”玉米種子需付款___元,購(gòu)買4千克“黃金1號(hào)”玉米種子需___元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,菱形OACB的頂點(diǎn)O在原點(diǎn),點(diǎn)C的坐標(biāo)為(4,0),點(diǎn)B的縱坐標(biāo)是﹣1,則頂點(diǎn)A坐標(biāo)是( )
A.(2,1)
B.(1,﹣2)
C.(1,2)
D.(2,﹣1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在四邊形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,下列各組條件,其中不能判定四邊形ABCD是平行四邊形的是( 。
A. OA=OC,OB=ODB. OA=OC,AB∥CD
C. AB=CD,OA=OCD. ∠ADB=∠CBD,∠BAD=∠BCD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)A(2,0),點(diǎn)B(1,3).
(1)畫出將△OAB繞原點(diǎn)順時(shí)針旋轉(zhuǎn)90°后所得的△OA1B1,并寫出點(diǎn)A1,B1的坐標(biāo);
(2)畫出△OAB關(guān)于原點(diǎn)O的中心對(duì)稱圖形△OA2B2,并寫出點(diǎn)A2,B2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,把一張長(zhǎng)方形卡片ABCD放在每格寬度為12mm的橫格紙中,恰好四個(gè)頂點(diǎn)都在橫格線上,已知∠α=36°,求長(zhǎng)方形卡片的周長(zhǎng).(精確到1mm)(參考數(shù)據(jù):sin36°≈0.60,cos36°≈0.80,tan36°≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點(diǎn)E為AB邊上的一個(gè)動(dòng)點(diǎn).
(1)如圖1,若△ABC是等邊三角形,以CE為邊在BC的同側(cè)作等邊△DEC,連結(jié)AD.試比較∠DAC與∠B的大小,并說明理由;
(2)如圖2,若△ABC中,AB=AC,以CE為底邊在BC的同側(cè)作等腰△DEC,且△DEC∽△ABC,連結(jié)AD.試判斷AD與BC的位置關(guān)系,并說明理由;
(3)如圖3,若四邊形ABCD是邊長(zhǎng)為2的正方形,以CE為邊在BC的同側(cè)作正方形ECGF.
①試說明點(diǎn)G一定在AD的延長(zhǎng)線上;
②當(dāng)點(diǎn)E在AB邊上由點(diǎn)B運(yùn)動(dòng)至點(diǎn)A時(shí),點(diǎn)F隨之運(yùn)動(dòng),求點(diǎn)F的運(yùn)動(dòng)路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中的每個(gè)小正方形的邊長(zhǎng)都為1,在建立平面直角坐標(biāo)系后,△ABC的頂點(diǎn)均在格點(diǎn)上.
(1)以點(diǎn)A為旋轉(zhuǎn)中心,將△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到△AB1C1,畫出△AB1C1;
(2)畫出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A2B2C2,若點(diǎn)B的坐標(biāo)為(-2,-2),則點(diǎn)B2的坐標(biāo)為_________.
(3)若△A2B2C2可看作是由△AB1C1繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°得到的,則點(diǎn)P的坐標(biāo)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:y=x2﹣2x+1的頂點(diǎn)為P,與y軸的交點(diǎn)為Q,點(diǎn)F(1, ).
(1)求tan∠OPQ的值;
(2)將拋物線C向上平移得到拋物線C′,點(diǎn)Q平移后的對(duì)應(yīng)點(diǎn)為Q′,且FQ′=OQ′.
①求拋物線C′的解析式;
②若點(diǎn)P關(guān)于直線Q′F的對(duì)稱點(diǎn)為K,射線FK與拋物線C′相交于點(diǎn)A,求點(diǎn)A的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com