先化簡,再求值:( +)÷,其中x=﹣1.


【考點】分式的化簡求值.

【專題】計算題.

【分析】原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除法法則變形,約分得到最簡結(jié)果,將x的值代入計算即可求出值.

【解答】解:原式=

=

=,

當(dāng)x=﹣1時,原式=

【點評】此題考查了分式的化簡求值,熟練掌握運算法則是解本題的關(guān)鍵.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,拋物線y=﹣x2+mx+n與x軸交于A、B兩點,與y軸交于點C,拋物線的對稱軸交x軸于點D,已知A(﹣1,0),C(0,2).

(1)求拋物線的表達式;

(2)在拋物線的對稱軸上是否存在點P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點的坐標(biāo);如果不存在,請說明理由;

(3)點E是線段BC上的一個動點,過點E作x軸的垂線與拋物線相交于點F,當(dāng)點E運動到什么位置時,四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時E點的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


三角形的中位線把三角形分成兩部分面積之比是      

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,直線l和雙曲線(k>0)交于A、B兩點,P是線段AB上的點(不與A、B重合),過點A、B、P分別向x軸作垂線,垂足分別是C、D、E,連接OA、OB、OP,設(shè)△AOC面積是S1,△BOD面積是S2,△POE面積是S3,則( 。

A.S1<S2<S3      B.S1>S2>S3      C.S1=S2>S3       D.S1=S2<S3

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


某次射擊訓(xùn)練中,一小組的成績?nèi)缦卤硭荆粼撔〗M的平均成績?yōu)?.7環(huán),則成績?yōu)?環(huán)的人數(shù)是      

環(huán)數(shù)

6

7

8

9

人數(shù)

1

3

 

2

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在直角坐標(biāo)系xOy中,△ABC是等腰直角三角形,∠BAC=90°,A(1,0),B(0,2),拋物線y=x2+bx﹣2的圖象經(jīng)過C點.

(1)求拋物線的解析式;

(2)平移該拋物線的對稱軸所在直線l.當(dāng)l移動到何處時,恰好將△ABC的面積分為相等的兩部分?

(3)點P是拋物線上一動點,是否存在點P,使四邊形PACB為平行四邊形?若存在,求出P點坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


分式方程的解是(  )

A.x=﹣1      B.x=  C.x=﹣3      D.x=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


情境觀察:

如圖1,△ABC中,AB=AC,∠BAC=45°,CD⊥AB,AE⊥BC,垂足分別為D、E,CD與AE交于點F.

①寫出圖1中所有的全等三角形      ;

②線段AF與線段CE的數(shù)量關(guān)系是      

問題探究:

如圖2,△ABC中,∠BAC=45°,AB=BC,AD平分∠BAC,AD⊥CD,垂足為D,AD與BC交于點E.

求證:AE=2CD.

拓展延伸:

如圖3,△ABC中,∠BAC=45°,AB=BC,點D在AC上,∠EDC=∠BAC,DE⊥CE,垂足為E,DE與BC交于點F.求證:DF=2CE.

要求:請你寫出輔助線的作法,并在圖3中畫出輔助線,不需要證明.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


解不等式的下列過程中錯誤的是(     )

A.去分母得5(2+x)>3(2x﹣1)       B.去括號得10+5x>6x﹣3

C.移項,合并同類項得﹣x>﹣13   D.系數(shù)化為1,得x>13

查看答案和解析>>

同步練習(xí)冊答案