【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E,連接BD.
(1)求證:DE是⊙O的切線;
(2)若BD=3,AD=4,則DE= .
【答案】(1)見解析;(2)
【解析】
(1)連接OD,如圖,先證明OD∥AE,再利用DE⊥AE得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;
(2)證明△ABD∽△ADE,通過線段比例關(guān)系求出DE的長.
(1)證明:連接OD
∵AD平分∠BAC
∴∠BAD=∠DAC
∵OA=OD
∴∠BAD=∠ODA
∴∠ODA=∠DAC
∴OD∥AE
∴∠ODE+∠E=180°
∵DE⊥AE
∴∠E=90°
∴∠ODE=180°-∠E=180°-90°=90°,即OD⊥DE
∵點D在⊙O上
∴DE是⊙O的切線.
(2)∵AB是⊙O的直徑,
∴∠ADB=90°,
∵AD平分∠BAC,
∴∠BAD=∠DAE,
在△ABD和△ADE中,
,
∴△ABD∽△ADE,
∴,
∵BD=3,AD=4,AB==5
∴DE==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=6,∠B=75°,將△ABC沿AC邊折疊得到△AB′C,B′C交AD于E,∠B′AE=45°,則點A到BC的距離為( 。
A.2B.3C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某果農(nóng)在其承包的果園中種植了60棵桔子樹,每棵桔子樹的產(chǎn)量是100kg,果農(nóng)想增加桔子樹的棵數(shù)來增產(chǎn),但增加果樹會導(dǎo)致每棵樹的光照減少,使得單棵果樹產(chǎn)量減少,試驗發(fā)現(xiàn)每增加1棵桔子樹,單棵桔子樹的產(chǎn)量減少0.5kg.
(1)在投入成本最低的情況下,增加多少棵桔子樹時,可以使果園總產(chǎn)量達到6650kg?
(2)設(shè)增加x棵桔子樹,考慮實際增加桔子樹的情況,10≤x≤40,請你計算一下,果園總產(chǎn)量最多為多少kg,最少為多少kg?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,直徑AD交BC于點E,延長AD至點F,使DF=2OD,連接FC并延長交過點A的切線于點G,且滿足AG∥BC,連接OC,若cos∠BAC=,BC=6.
(1)求證:∠COD=∠BAC;
(2)求⊙O的半徑OC;
(3)求證:CF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于A(﹣2,0),點B(4,0).
(1)求拋物線的解析式;
(2)若點M是拋物線上的一動點,且在直線BC的上方,當S△MBC取得最大值時,求點M的坐標;
(3)在直線的上方,拋物線是否存在點M,使四邊形ABMC的面積為15?若存在,求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D是△ABC內(nèi)一點,BD⊥CD,E、F、G、H分別是邊AB、BD、CD、AC的中點.若AD=10,BD=8,CD=6,則四邊形EFGH的周長是( 。
A.24B.20C.12D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動點從點出發(fā),以每秒個單位長度的速度沿著方向向點運動,動點從點出發(fā),以每秒個單位長度的速度沿著方向向點運動,如果,兩點同時出發(fā),當到達點處時,兩點都停止運動.設(shè)運動的時間為秒,的面積為.
(1)用含的代數(shù)式表示:
, , ;
(2)求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在硬地上拋擲一枚圖釘,通常會出現(xiàn)兩種情況:
下面是小明和同學(xué)做“拋擲圖釘實驗”獲得的數(shù)據(jù):
拋擲次數(shù)n | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 |
針尖不著地的頻數(shù)m | 63 | 120 | 186 | 252 | 310 | 360 | 434 | 488 | 549 | 610 |
針尖不著地的頻率 | 0.63 | 0.60 | 0.63 | 0.60 | 0.62 | 0.61 |
(1)填寫表中的空格;
(2)畫出該實驗中,拋擲圖釘釘尖不著地頻率的折線統(tǒng)計圖;
(3)根據(jù)“拋擲圖釘實驗”的結(jié)果,估計“釘尖著地”的概率為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠ACB=90°,AB=25,BC=15.
(1)如圖1,折疊△ABC使點A落在AC邊上的點D處,折痕交AC、AB分別于Q、H,若,則HQ= .
(2)如圖2,折疊△ABC使點A落在BC邊上的點M處,折痕交AC、AB分別于E、F.若FM∥A,求證:四邊形AEMF是菱形;
(3)在(1)(2)的條件下,線段CQ上是否存在點P,使得△CMP和△HQP相似?若存在,求出PQ的長;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com