【題目】如圖,在△ABC中,∠ACB=90°,點(diǎn)D,E在AB上,且AF垂直平分CD,BG垂直平分CE.(1)求∠ECD的度數(shù);(2)若∠ACB為α,則∠ECD的度數(shù)能否用含α的式子來(lái)表示.
【答案】見(jiàn)解析
【解析】試題分析:
(1)由AF垂直平分CD可得AC=AD,再由等腰三角形的“三線(xiàn)合一”可得∠FAB=∠CAB,同理可得∠GBA=∠CBA;如圖,設(shè)AF、BG相交于點(diǎn)O,則∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=135°,由此在四邊形GOFC中可得∠ECD=360°-∠CGO-∠CFO-∠GOF=360°-90°-90°-∠GOF=180°-135°=45°.
(2)思路同(1)只需把∠ACB=90°換成∠ACB= 可解得∠DCE=90°- .
試題解析:
(1)如圖,設(shè)AF、BG相交于點(diǎn)O,連接CO,
∵AF垂直平分CD,
∴AC=AD,∠CFO=90°,∴∠FAB=∠CAB.
同理可得:∠CGO=90°,∠GBA=∠CBA.
∴∠GOF=∠AOB=180°-∠FAB-∠GBA=180°-(180°-∠ACB)=90°+∠ACB=135°,
∵四邊形GOFC的內(nèi)角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-135°
=45°.
(2)同(1)可得∠GOF=90°+∠ACB=90°+ ,∠CFO=90°,∠CGO=90°,
∵四邊形GOFC的內(nèi)角和為360°,
∴∠ECD=360°-∠CGO-∠CFO-∠GOF
=360°-90°-90°-∠GOF
=180°-(90°+ )
=90°- .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某高校共有5個(gè)大餐廳和2個(gè)小餐廳。經(jīng)過(guò)測(cè)試:同時(shí)開(kāi)放1個(gè)大餐廳和2個(gè)小餐廳,可供1680名學(xué)生就餐;同時(shí)開(kāi)放2個(gè)大餐廳和1個(gè)小餐廳,可供2280名學(xué)生就餐。
(1)1個(gè)大餐廳和1個(gè)小餐廳分別可供多少名學(xué)生就餐?
(2)若7個(gè)餐廳同時(shí)開(kāi)放,能否供全校的5300名學(xué)生就餐?請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)MN過(guò)□ABCD的頂點(diǎn)D,過(guò)A,B,C三點(diǎn),分別作MN的垂線(xiàn),垂足分別是E,F,G.
求證:DE=FG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,正方形A1B1C1O1、A2B2C2C1、…、AnBnCnCn﹣1按如圖所示的方式放置,其中點(diǎn)A1、A2、A3、…、An均在一次函數(shù)y=kx+b的圖象上,點(diǎn)C1、C2、C3、…、Cn均在x軸上.若點(diǎn)B1的坐標(biāo)為(1,1),點(diǎn)B2的坐標(biāo)為(3,2),則點(diǎn)An的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于不等式組 下列說(shuō)法正確的是( )
A. 此不等式組無(wú)解 B. 此不等式組有7個(gè)整數(shù)解
C. 此不等式組的負(fù)整數(shù)解是﹣3,﹣2,﹣1 D. 此不等式組的解集是<x≤2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列各式,屬于二元一次方程的個(gè)數(shù)有( )
①xy+2x-y=7; ②4x+1=x-y; ③+y=5; ④x=y; ⑤x2-y2=2
⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+x
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】魯班家裝公司為芙蓉小區(qū)做家裝設(shè)計(jì),調(diào)查員設(shè)計(jì)了如下問(wèn)卷,對(duì)家裝風(fēng)格進(jìn)行專(zhuān)項(xiàng)調(diào)查.
通過(guò)隨機(jī)抽樣調(diào)查50家客戶(hù),得到如下數(shù)據(jù):
A B B A B B A C A C A B A D A A B
B A A D B A B A C A C B A A D A A
A B B D A A A B A C A B D A B A
(1)請(qǐng)你補(bǔ)全下面的數(shù)據(jù)統(tǒng)計(jì)表: 家裝風(fēng)格統(tǒng)計(jì)表
裝修風(fēng)格 | 劃記 | 戶(hù)數(shù) | 百分比 |
A中式 | 正正正正正 | 25 | 50% |
B歐式 | |||
C韓式 | 5 | 10% | |
D其他 | 正 | 10% | |
合計(jì) | 50 | 100% |
(2)請(qǐng)用扇形統(tǒng)計(jì)圖描述(1)表中的統(tǒng)計(jì)數(shù)據(jù);(注:請(qǐng)標(biāo)明各部分的圓心角度數(shù))
(3)如果公司準(zhǔn)備招聘10名裝修設(shè)計(jì)師,你認(rèn)為各種裝修風(fēng)格的設(shè)計(jì)師應(yīng)分別招多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(題文)(1)閱讀理解:
如圖1,在△ABC中,若AB=10,AC=6,求BC邊上的中線(xiàn)AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,連接BE(或?qū)ⅰ鰽CD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三邊的關(guān)系即可判斷中線(xiàn)AD的取值范圍是_________;
(2)問(wèn)題解決:
如圖2,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證BE+CF>EF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com