【題目】定義:頂點(diǎn)、開口大小相同,開口方向相反的兩個(gè)二次函數(shù)互為“反簇二次函數(shù)”.
(1)已知二次函數(shù)y=﹣(x﹣2)2+3,則它的“反簇二次函數(shù)”是__________________;
(2)已知關(guān)于x的二次函數(shù)y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的圖像經(jīng)過點(diǎn)(1,1).若y1+y2與y1互為“反簇二次函數(shù)”.求函數(shù)y2的表達(dá)式,并直接寫出當(dāng)0≤x≤3時(shí),y2的最小值.
【答案】(1)、y=(x﹣2)2+3;(2)、-16.
【解析】分析:(1)、根據(jù)“反簇二次函數(shù)”的定義得出答案;(2)、根據(jù)y1的圖像經(jīng)過點(diǎn)A(1,1)求出m的值,然后得出y1+y2的函數(shù)解析式,根據(jù)“反簇二次函數(shù)”的定義得出a、b、c的值,從而得出y2的函數(shù)解析式,根據(jù)二次函數(shù)的性質(zhì)得出最小值.
詳解:(1)y=(x﹣2)2+3
(2)∵y1的圖像經(jīng)過點(diǎn)A(1,1), ∴2﹣2m+m+2=2. 解得m=2.
∴y1=2x2﹣4x+3=2(x﹣1)2+1. ∴y1+y2=2x2﹣4x+3+ax2+bx+c=(a+2)x2+(b﹣4)x+c+3,
∵y1+y2與y1為“反簇二次函數(shù)”, ∴y1+y2=-2(x﹣1)2+1=﹣2x2+4x﹣1,
∴解得:. ∴函數(shù)y2的表達(dá)式為:y2=﹣4x2+8x﹣4.
當(dāng)0≤x≤3時(shí),y2的最小值為﹣16.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)期間,某品牌粽子經(jīng)銷商銷售甲、乙兩種不同味道的粽子,已知一個(gè)甲種粽子和一個(gè)乙種粽子的進(jìn)價(jià)之和為10元,每個(gè)甲種粽子的利潤是4元,每個(gè)乙種粽子的售價(jià)比其進(jìn)價(jià)的2倍少1元,小王同學(xué)買4個(gè)甲種粽子和3個(gè)乙種粽子一共用了61元.
(1)甲、乙兩種粽子的進(jìn)價(jià)分別是多少元?
(2)在(1)的前提下,經(jīng)銷商統(tǒng)計(jì)發(fā)現(xiàn):平均每天可售出甲種粽子200個(gè)和乙種粽子150個(gè).如果將兩種粽子的售價(jià)各提高1元,則每天將少售出50個(gè)甲種粽子和40個(gè)乙種粽子.為使每天獲取的利潤更多,經(jīng)銷商決定把兩種粽子的價(jià)格都提高x元.在不考慮其他因素的條件下,當(dāng)x為多少元時(shí),才能使該經(jīng)銷商每天銷售甲、乙兩種粽子獲取的利潤為1190元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“端午節(jié)”是我國的傳統(tǒng)佳節(jié),民間歷來有吃“粽子”的習(xí)俗. 我市某食品廠為了解市民對去年銷量較好的肉餡粽、豆沙餡粽、紅棗餡粽、蛋黃餡粽(以下分別用A、B、C、D表示)這四種不同口味粽子的喜愛情況,在節(jié)前對某居民區(qū)市民進(jìn)行了抽樣調(diào)查,并將調(diào)查情況繪制成如下兩幅統(tǒng)計(jì)圖(尚不完整). 請根據(jù)以上信息回答:
(1)本次參加抽樣調(diào)查的居民有多少人?
(2)將兩幅不完整的圖補(bǔ)充完整;
(3)若居民區(qū)有8000人,請估計(jì)愛吃D粽的人數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖直角坐標(biāo)系內(nèi),四邊形AOBC是邊長為2的菱形,E為邊OB的中點(diǎn),連結(jié)AE與對角線OC交于點(diǎn)D,且∠BCO=∠EAO,則點(diǎn)D坐標(biāo)為( )
A. (,) B. (1,) C. (,) D. (1,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次大型活動(dòng),組委會(huì)啟用無人機(jī)航拍活動(dòng)過程,在操控?zé)o人機(jī)時(shí)應(yīng)根據(jù)現(xiàn)場狀況調(diào)節(jié)高度,已知無人機(jī)在上升和下降過程中速度相同,設(shè)無人機(jī)的飛行高度為y(米),操控?zé)o人機(jī)的時(shí)間為x(分),y與x之間的函數(shù)圖像如圖所示.
(1)無人機(jī)的速度為________米/分;
(2)求線段BC所表示的y與x之間函數(shù)表達(dá)式;
(3)無人機(jī)在50米上空持續(xù)飛行時(shí)間為_________分.(直接填結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市從年月日開始實(shí)施階梯電價(jià)制,居民生活用電價(jià)格方案如下:
檔次 | 月用電量 | 電價(jià) (單位:元度) | |
春秋季(,,,,,月) | 冬夏季(,,,,,月) | ||
第檔 | 不超過度的部分 | 不超過度的部分 | |
第檔 | 超過度但不超過度的部分 | 超過度但不超過度的部分 | |
第檔 | 超過度的部分 | 超過度的部分 |
例:若某用戶年月的用電量為度,則需交電費(fèi)為:
(元).
(1)若小辰家年月的用電量為度,則需交電費(fèi)多少元?
(2)若小辰家年月和月用電量相同,共交電費(fèi)元,問小辰家月份用多少度電?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】《數(shù)》是中國數(shù)學(xué)史上的重要著作,比我們熟知的漢代《九章算術(shù)》還要古老,保存了許多古代算法的最早例證(比如“勾股”概念),改變了我們對周秦?cái)?shù)學(xué)發(fā)展水平的認(rèn)識(shí).文中記載“有婦三人,長者一日織五十尺,中者二日織五十尺,少者三日織五十尺,今威有功五十尺,問各受幾何?”譯文:“三位女人善織布,姥姥1天織布50尺,媽媽2天織布50尺,妞妞3天織布50尺.如今三人齊上陣,共同完成50尺織布任務(wù),請問每人織布幾尺?”設(shè)三人一共用了x天完成織布任務(wù),則可列方程為________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們給出如下定義:順次連接任意一個(gè)四邊形各邊中點(diǎn)所得的四邊形叫中點(diǎn)四邊形.
(1)如圖1,四邊形ABCD中,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn).求證:中點(diǎn)四邊形EFGH是平行四邊形;
(2)如圖2,點(diǎn)P是四邊形ABCD內(nèi)一點(diǎn),且滿足PA=PB,PC=PD,∠APB=∠CPD,點(diǎn)E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點(diǎn),猜想中點(diǎn)四邊形EFGH的形狀,并證明你的猜想;
(3)若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點(diǎn)四邊形EFGH的形狀.(不必證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】分類討論是一種非常重要的數(shù)學(xué)方法,如果一道題提供的已知條件中包含幾種情況,我們可以分情況討論來求解.例如:若|x|=2,|y|=3求x+y的值.
情況①若x=2,y=3時(shí),x+y=5
情況②若x=2,y=﹣3時(shí),x+y=﹣1
情況③若x=﹣2,y=3時(shí),x+y=1
情況④若x=﹣2,y=﹣3時(shí),x+y=﹣5
所以,x+y的值為1,﹣1,5,﹣5.
幾何的學(xué)習(xí)過程中也有類似的情況:
問題(1):已知點(diǎn)A,B,C在一條直線上,若AB=8,BC=3,則AC長為多少?
通過分析我們發(fā)現(xiàn),滿足題意的情況有兩種
情況①當(dāng)點(diǎn)C在點(diǎn)B的右側(cè)時(shí),如圖1,此時(shí),AC=
情況②當(dāng)點(diǎn)C在點(diǎn)B的左側(cè)時(shí),如圖2,此時(shí),AC=
通過以上問題,我們發(fā)現(xiàn),借助畫圖可以幫助我們更好的進(jìn)行分類.
問題(2):如圖3,數(shù)軸上點(diǎn)A和點(diǎn)B表示的數(shù)分別是﹣1和2,點(diǎn)C是數(shù)軸上一點(diǎn),且BC=2AB,則點(diǎn)C表示的數(shù)是多少?
仿照問題1,畫出圖形,結(jié)合圖形寫出分類方法和結(jié)果.
問題(3):點(diǎn)O是直線AB上一點(diǎn),以O(shè)為端點(diǎn)作射線OC、OD,使∠AOC=60°,OCOD,求∠BOD的度數(shù).畫出圖形,直接寫出結(jié)果.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com