對(duì)于任意正整數(shù)n,式子(3n+1)(3n-1)-(3-n)(3+n)的值是否是10的倍數(shù)?若是10的倍數(shù),試說(shuō)明理由.

答案:
解析:

  ∵(3n+1)(3n-1)-(3-n).(3+n)=9n2-1-9+n2=10n2-10=10(n2-1)

  ∴10(n2-1)是10的倍數(shù)

  ∴原式是10的倍數(shù).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以A為頂點(diǎn)的拋物線與y軸交于點(diǎn)B、已知A、B兩點(diǎn)的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(diǎn)(m、n為正整數(shù)),且它位于對(duì)稱軸的右側(cè).若以M、B、O、A為頂點(diǎn)的四邊形四條邊的長(zhǎng)度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,試問(wèn):對(duì)于拋物線對(duì)稱軸上的任意一點(diǎn)P,PA2+PB2+PM2>28是否總成立?請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:活學(xué)巧練八年級(jí)數(shù)學(xué)上 題型:044

對(duì)于任意正整數(shù)n,整式(3n+1)(3n-1)-(3-n)(3+n)的值是否是10的倍數(shù),若是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分9分)
如圖,以為頂點(diǎn)的拋物線與軸交于點(diǎn).已知、兩點(diǎn)坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)是拋物線上的一點(diǎn)(為正整數(shù)),且它位于對(duì)稱軸的右側(cè).若以、、為頂點(diǎn)的四邊形四條邊的長(zhǎng)度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,試問(wèn):對(duì)于拋物線對(duì)稱軸上的任意一點(diǎn),是否總成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年高級(jí)中等學(xué)校招生考試數(shù)學(xué)卷(江蘇南通) 題型:解答題

(本題滿分9分)
如圖,以為頂點(diǎn)的拋物線與軸交于點(diǎn).已知、兩點(diǎn)坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)是拋物線上的一點(diǎn)(、為正整數(shù)),且它位于對(duì)稱軸的右側(cè).若以、、、為頂點(diǎn)的四邊形四條邊的長(zhǎng)度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,試問(wèn):對(duì)于拋物線對(duì)稱軸上的任意一點(diǎn),是否總成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第26章《二次函數(shù)》中考題集(27):26.3 實(shí)際問(wèn)題與二次函數(shù)(解析版) 題型:解答題

如圖,以A為頂點(diǎn)的拋物線與y軸交于點(diǎn)B、已知A、B兩點(diǎn)的坐標(biāo)分別為(3,0)、(0,4).
(1)求拋物線的解析式;
(2)設(shè)M(m,n)是拋物線上的一點(diǎn)(m、n為正整數(shù)),且它位于對(duì)稱軸的右側(cè).若以M、B、O、A為頂點(diǎn)的四邊形四條邊的長(zhǎng)度是四個(gè)連續(xù)的正整數(shù),求點(diǎn)M的坐標(biāo);
(3)在(2)的條件下,試問(wèn):對(duì)于拋物線對(duì)稱軸上的任意一點(diǎn)P,PA2+PB2+PM2>28是否總成立?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案