【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖①.為了測(cè)量雕塑的高度,小明在二樓找到一點(diǎn)C,利用三角板測(cè)得雕塑頂端A點(diǎn)的仰角為,底部B點(diǎn)的俯角為,小華在五樓找到一點(diǎn)D,利用三角板測(cè)得A點(diǎn)的俯角為(如圖②.若已知CD10米,請(qǐng)求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)).

【答案】

【解析】試題分析:

由題意可得:ADC=30°,ACD=60°BCE=45°,ABE=BEC=90°,由此可得∠DAC=180°-30°-60°=90°,結(jié)合CD=10可得AC=5;過(guò)點(diǎn)AAFDE于點(diǎn)F,則∠AFE=90°,從而在△AFC中由∠ACD=60°可得∠CAF=30°,由此可得CF=2.5,AF=,再證四邊形ABEF是矩形可得BE=AF=結(jié)合BCE=45°,BEC=90°可得CE=BE=,從而可得AB=EF=CF+BE=2.5+.

試題解析

由題意可得:∠ADC=30°,∠ACD=60°,∠BCE=45°,∠ABE=∠BEC=90°,

△ADC∠DAC=180°-30°-60°=90°,

又∵CD=10,∠D=30°,

∴AC=5,

過(guò)點(diǎn)AF⊥CD于點(diǎn)F,

∴∠AFC=90°

∵∠ACD=60°,

∴∠CAF=30°,

CF=2.5,AF=AC·sin60°=

∵∠ABE=∠BEF=∠AFE=90°

四邊形ABEF是矩形,

BE=AF=AB=EF

△BEC,∠BEC=90°∠BCE=45°

CE=BE=,

AB=EF=CE+CF=2.5+ 6.8.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)D、E分別在ABC的邊ACBC上,∠C=90°,DEAB,且3DE=2AB,AE=13,BD=9,那么AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】列方程式應(yīng)用題.

天河食品公司收購(gòu)了200噸新鮮柿子,保質(zhì)期15天,該公司有兩種加工技術(shù),一種是加工為普通柿餅,另一種是加工為特級(jí)霜降柿餅,也可以不需加工直接銷售.相關(guān)信息見(jiàn)表:

品種

每天可加工數(shù)量(噸)

每噸獲利(元)

新鮮柿子

不需加工

1000

普通柿餅

16

5000

特級(jí)霜降柿餅

8

8000

由于生產(chǎn)條件的限制,兩種加工方式不能同時(shí)進(jìn)行,為此公司研制了兩種可行方案:

方案1:盡可能多地生產(chǎn)為特級(jí)霜降柿餅,沒(méi)來(lái)得及加工的新鮮柿子,在市場(chǎng)上直接銷售;

方案2:先將部分新鮮柿子加工為特級(jí)霜降柿餅,再將剩余的新鮮柿子加工為普通柿餅,恰好15天完成.

請(qǐng)問(wèn):哪種方案獲利更多?獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,M△ABC的邊BC的中點(diǎn),AN平分∠BAC,BN⊥AN于點(diǎn)N,延長(zhǎng)BNAC于點(diǎn)D,已知AB=10,BC=15MN=3

1)求證:BN=DN;

2)求△ABC的周長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ADBC邊上的高, .

1)求證:ACBD;

2)若,直接寫出AD的長(zhǎng)是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BD是矩形ABCD的一條對(duì)角線.

(1)BD的垂直平分線EF,分別交AD,BC于點(diǎn)E,F,垂足為點(diǎn)O;(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,AB=1,∠A=60°EFGH是矩形,矩形的頂點(diǎn)都在菱形的邊上.設(shè)AE=AH=x0x1),矩形的面積為S

1)求S關(guān)于x的函數(shù)解析式;

2)當(dāng)EFGH是正方形時(shí),求S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)AB、C是數(shù)軸上三點(diǎn),O為原點(diǎn).點(diǎn)C對(duì)應(yīng)的數(shù)為6,BC4,AB12

1)求點(diǎn)A、B對(duì)應(yīng)的數(shù);

2)動(dòng)點(diǎn)P、Q分別同時(shí)從A、C出發(fā),分別以每秒6個(gè)單位和3個(gè)單位的速度沿?cái)?shù)軸正方向運(yùn)動(dòng).MAP的中點(diǎn),NCQ上,且CNCQ,設(shè)運(yùn)動(dòng)時(shí)間為tt0).

①求點(diǎn)M、N對(duì)應(yīng)的數(shù)(用含t的式子表示); t為何值時(shí),OM2BN

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了發(fā)展鄉(xiāng)村旅游,建設(shè)美麗從化,某中學(xué)七年級(jí)一班同學(xué)都積極參加了植樹(shù)活動(dòng),今年四月份該班同學(xué)的植樹(shù)情況部分如圖所示,且植樹(shù)2株的人數(shù)占32%.

(1)求該班的總?cè)藬?shù)、植樹(shù)株數(shù)的眾數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

(2)若將該班同學(xué)的植樹(shù)人數(shù)所占比例繪制成扇形統(tǒng)計(jì)圖時(shí),求植樹(shù)3對(duì)應(yīng)扇形的圓心角的度數(shù);

(3)求從該班參加植樹(shù)的學(xué)生中任意抽取一名,其植樹(shù)株數(shù)超過(guò)該班植樹(shù)株數(shù)的平均數(shù)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案