【題目】如圖,直線y=﹣x+10與x軸、y軸分別交于點B,C,點A的坐標為(8,0),P(x,y)是直線y=﹣x+10在第一象限內(nèi)一個動點.

(1)求△OPA的面積S與x的函數(shù)關系式,并寫出自變量的x的取值范圍;

(2)當△OPA的面積為10時,求點P的坐標.

【答案】(1)﹣4x+40,(0<x<10).(2)(, ).

【解析】(1)根據(jù)三角形的面積公式S△OPA=OAy,然后把y轉(zhuǎn)換成x,即可求得△OPA的面積S與x的函數(shù)關系式;

(2)把s=10代入S=﹣4x+40,求得x的值,把x的值代入y=﹣x+10即可求得P的坐標.

解(1)∵A(8,0),

∴OA=8,

S=OA|yP|=×8×(﹣x+10)=﹣4x+40,(0<x<10).

(2)當S=10時,則﹣4x+40=10,解得x=,

當x=時,y=﹣+10=

∴當△OPA的面積為10時,點P的坐標為( ).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在正方形中,是對角線上的一點,點的延長線上,且

求證:

求證:

把正方形改為菱形,其他條件不變(如圖②),且,求的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績進行統(tǒng)計(滿分100分,學生成績?nèi)≌麛?shù)),并按照成績從低到高分成、、、五個小組,繪制統(tǒng)計圖如下(未完成),解答下列問題:

1)樣本容量為______,頻數(shù)分布直方圖中______;

2)扇形統(tǒng)計圖中小組所對應的扇形圓心角為______度,并補全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點A按順時針方向旋轉(zhuǎn)得到的.連接BE、CF相交于點D.

(1)求證:BE=CF.

(2)當四邊形ACDE為菱形時,求BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題:

13.587--5+-5++7-+3-+1.587);

2)(-15×{[4÷(-22+(-1.25×(-0.4(-)-32}.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線y=﹣2x經(jīng)過點P(﹣2,a),點P關于y軸的對稱點P′在反比例函數(shù)(k≠0)的圖象上.

(1)求a的值;

(2)直接寫出點P′的坐標;

(3)求反比例函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=mx2-6mx+5m與x軸交于A、B兩點,以AB為直徑的⊙P經(jīng)過該拋物線的頂點C,直線l∥x軸,交該拋物線于M、N兩點,交⊙P與E、F兩點,若EF=2,則MN的長為

A.2 B.4 C.5 D.6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校開展“校園獻愛心”活動.準備向西部山區(qū)學校捐贈男、女兩種款式的書包,已知男款書包單價/個,女款書包單價/.

原計劃募捐元,恰好可購買兩種款式的書包個,問兩種款式的書包各買多少個?

在捐款活動中,師生積極性高,實際捐款額和書包數(shù)量都高于原計劃.快遞公司將這些書包裝箱運送,其中每箱書包數(shù)量相同.第一次他們領走這批的,結果裝了箱還多個書包;第二次他們把余下的領走.連同第一次裝箱剩下的個書包一起,剛好裝了.:實際購買書包共多少個?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一分鐘投籃測試規(guī)定,得6分以上為合格,得9分以上為優(yōu)秀,甲、乙兩組同學的一次測試成績?nèi)缦拢?/span>

成績(分)

4

5

6

7

8

9

甲組(人)

1

2

5

2

1

4

乙組(人)

1

1

4

5

2

2

1)請你根據(jù)上述統(tǒng)計數(shù)據(jù),把下面的圖和表補充完整;

一分鐘投籃成績統(tǒng)計分析表:

統(tǒng)計量

平均分

方差

中位數(shù)

合格率

優(yōu)秀率

甲組

2.56

6

80.0%

26.7%

乙組

6.8

1.76

86.7%

13.3%

2)下面是小明和小聰?shù)囊欢螌υ挘埬愀鶕?jù)(1)中的表,寫出兩條支持小聰?shù)挠^點的理由.

查看答案和解析>>

同步練習冊答案