【題目】如圖,矩形中,,,點、分別在邊,上,且,連接,將對折,點落在直線上的點處,得折痕;將對折,點落在直線上的點處,得折痕,當分別在邊,上時.若令的面積為,的長度為,則關于的函數(shù)解析式是(

A.

B.

C.

D.

【答案】A

【解析】

對折可知△NA’E≌△NAE,可得A’E=AE=x;對折可知△MB’E≌△MBE,可得∠MB’E=90°,B’E=EB=4-x,∠MEB’=∠MEB=60°,MB’=.再利用即可求解.

:∵對折,

∴△NA’E≌△NAE,

∴A’E=AE=x,

對折,

∴△MB’E≌△MBE,

∴∠MB’E=90°,B’E=EB=4-x,∠MEB’=∠MEB=60°,

∴A’B’=x-4+x=2x-4,,MB’=

,

故選擇A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某校學生會準備調查六年級學生參加“武術類”、“書畫類”、“棋牌類”、“器樂類”四類校本課程的人數(shù).

(1)確定調查方式時,甲同學說:“我到六年級(1)班去調查全體同學”;乙同學說:“放學時我到校門口隨機調查部分同學”;丙同學說:“我到六年級每個班隨機調查一定數(shù)量的同學”.請指出哪位同學的調查方式最合理.

類別

頻數(shù)(人數(shù))

頻率

武術類

0.25

書畫類

20

0.20

棋牌類

15

b

器樂類

合計

a

1.00

(2)他們采用了最為合理的調查方法收集數(shù)據(jù),并繪制了如圖所示的統(tǒng)計表和扇形統(tǒng)計圖.

請你根據(jù)以上圖表提供的信息解答下列問題:

①a=_____,b=_____;

②在扇形統(tǒng)計圖中,器樂類所對應扇形的圓心角的度數(shù)是_____;

③若該校六年級有學生560人,請你估計大約有多少學生參加武術類校本課程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知ABC的三個頂點的坐標分別為A(1,0),B(2,﹣3),C(4,﹣2).

(1)畫出ABC關于x軸的對稱圖形A1B1C1;

(2)畫出A1B1C1向左平移3個單位長度后得到的A2B2C2;

(3)如果AC上有一點P(m,n)經過上述兩次變換,那么對應A2C2上的點P2的坐標是   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一張一個角為30°,最小邊長為4的直角三角形紙片,沿圖中所示的中位線剪開后,將兩部分拼成一個四邊形,所得四邊形的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】王教授和他的孫子小強星期天一起去爬山,來到山腳下,小強讓爺爺先上山,然后追趕爺爺,如圖所示,兩條線段分別表示小強和爺爺離開山腳的距離(米)與爬山所用時間(分)的關系(小強開始爬山時開始計時),請看圖回答下列問題:

1)爺爺比小強先上了多少米?山頂離山腳多少米?

2)誰先爬上山頂?小強爬上山頂用了多少分鐘?

3)圖中兩條線段的交點表示什么意思?這時小強爬山用時多少?離山腳多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某賓館客房部有個房間供游客居住,當每個房間的定價為每天元時,所有房間剛好可以住滿,根據(jù)經驗發(fā)現(xiàn),每個房間的定價每增加元,就會有個房間空閑,對有游客入住的房間,賓館需對每個房間支出每天元的各種費用.設每個房間的定價增加元,每天的入住量為個,客房部每天的利潤為元.

的函數(shù)關系式;

的函數(shù)關系式,并求客房部每天的最大利潤是多少?

為何值時,客房部每天的利潤不低于元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在四邊形ABCD的邊BC的延長線上取一點E,在直線BC的同側作一個以CE為底的等腰CEF,且滿足∠B+F180°,則稱三角形CEF為四邊形ABCD伴隨三角形

1)如圖1,若CEF是正方形ABCD伴隨三角

①連接AC,則∠ACF   ;

②若CE2BC,連接AECFH,求證:HCF的中點;

2)如圖2,若CEF是菱形ABCD伴隨三角形,∠B60°M是線段AE的中點,連接DM、FM,猜想并證明DMFM的位置與數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+4x軸于點A、B,交y軸于點C,連結AC,BC,D是線段OB上一動點,以CD為一邊向右側作正方形CDEF,連結BF,交DE于點P.

(1)試判斷△ABC的形狀,并說明理由;

(2)求證:BFAB.

(3)當點D從點O沿x軸正方向移動到點B時,點E所走過的路線長為______;

(4)探究當點D在何處時,△FBC是等腰三角形,并求出相應的BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】探究與發(fā)現(xiàn):如圖1所示的圖形,像我們常見的學習用品--圓規(guī).我們不妨把這樣圖形叫做規(guī)形圖,

1)觀察規(guī)形圖,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;

2)請你直接利用以上結論,解決以下三個問題:

①如圖2,把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、XZ恰好經過點B、C,∠A=40°,則∠ABX+ACX等于多少度;

②如圖3,DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度數(shù);

③如圖4,∠ABD,∠ACD10等分線相交于點G1、G2、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度數(shù).

查看答案和解析>>

同步練習冊答案