【題目】如圖,拋物線與軸相交于點(diǎn)(﹣1,0)、(3,0),與軸相交于點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn)(不與、重合),過(guò)點(diǎn)垂直于軸的直線與拋物線及線段分別交于點(diǎn)、,點(diǎn)在軸正半軸上,=2,連接、.
(1)求拋物線的解析式;
(2)當(dāng)四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo);
(3)過(guò)點(diǎn)的直線將(2)中的平行四邊形分成面積相等的兩部分,求這條直線的解析式.(不必說(shuō)明平分平行四邊形面積的理由)
【答案】(1)拋物線的解析式為:;(2)點(diǎn)坐標(biāo)為或;(3) ①當(dāng)時(shí),所求直線的解析式為:;②當(dāng)時(shí),所求直線的解析式為:.
【解析】
(1)將點(diǎn)和點(diǎn)的坐標(biāo)代入拋物線函數(shù)中,可求出未知量,.則可求出該拋物線解析式;
(2)由平行四邊形的性質(zhì)可知,,用含未知量的代數(shù)式表示的長(zhǎng)度.則可得點(diǎn)坐標(biāo) ;
(3)平行四邊形是中心對(duì)稱圖形,其對(duì)稱中心為兩條對(duì)角線的交點(diǎn)(或?qū)蔷的中點(diǎn)),過(guò)對(duì)稱中心的直線平分平行四邊形的面積,因此過(guò)點(diǎn)與對(duì)稱中心的直線平分的面積.求得此直線,首先要求得對(duì)稱中心的坐標(biāo).則兩點(diǎn)坐標(biāo)可確定該直線.
解:(1)點(diǎn)、在拋物線上,
∴,
解得,,
拋物線的解析式為:.
(2)在拋物線解析式中,令x=0,得y=3,
∴C(0,3).
設(shè)直線BC的解析式為y=kx+b,,將,C坐標(biāo)代入得:
,
解得k=-1,b=3,
∴.
設(shè)E點(diǎn)坐標(biāo)為(x,-x2+2x+3),則P(x,0),F(x,-x+3),
∴EF=yE-yF=-x2+2x+3-(-x+3)=-x2+3x.
∵四邊形ODEF是平行四邊形,
∴EF=OD=2,
∴-x2+3x=2,即x2-3x+2=0,
解得x=1或x=2,
∴P點(diǎn)坐標(biāo)為(1,0)或(2,0).
(3)平行四邊形是中心對(duì)稱圖形,其對(duì)稱中心為兩條對(duì)角線的交點(diǎn)(或?qū)蔷的中點(diǎn)),過(guò)對(duì)稱中心的直線平分平行四邊形的面積,因此過(guò)點(diǎn)A與ODEF對(duì)稱中心的直線平分ODEF的面積.
①當(dāng)P(1,0)時(shí),
點(diǎn)F坐標(biāo)為(1,2),又D(0,2),
設(shè)對(duì)角線DF的中點(diǎn)為G,則,
設(shè)直線AG的解析式為y=kx+b,將A(-1,0),坐標(biāo)代入得:
解得
∴所求直線的解析式為:
②當(dāng)P
點(diǎn)F坐標(biāo)為(2,1),又D(0,2),
設(shè)對(duì)角線DF的中點(diǎn)為G,則
設(shè)直線AG的解析式為y=kx+b,將A(-1,0),坐標(biāo)代入得:
解得
∴所求直線的解析式為:
綜上所述,所求直線的解析式為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
(1)請(qǐng)畫(huà)出將△ABC向左平移4個(gè)單位長(zhǎng)度后得到的圖形△A1B1C1;
(2)請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的圖形△A2B2C2;
(3)在x軸上找一點(diǎn)P,使PA+PB的值最小,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)C、B分別在軸、軸上,△ABC是等腰直角三角形,∠BAC=90°,已知A(2,2)、P(1,0).M為BC的中點(diǎn),則PM的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形中,,是的中點(diǎn),延長(zhǎng)交的延長(zhǎng)線于點(diǎn),且.
(1)求證:;
(2)若, ,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB,CD是直徑,BE是切線,B為切點(diǎn),連接AD,BC,BD.
(1)求證:△ABD≌△CDB;
(2)若∠DBE=37°,求∠ADC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)購(gòu)的日益盛行,物流行業(yè)已逐漸成為運(yùn)輸業(yè)的主力,已知某大型物流公司有A、B兩種型號(hào)的貨車,A型貨車的滿載量是B型貨車滿載量的2倍多4噸,在兩車滿載的情況下,用A型貨車載1400噸貨物與用B型貨車載560噸貨物的用車數(shù)量相同.
(1)1輛A型貨車和1輛B型貨車的滿載量分別是多少?
(2)該物流公司現(xiàn)有120噸貨物,可以選擇上述兩種貨車運(yùn)送,在滿載的情況下,有幾種方案可以一次性運(yùn)完?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知點(diǎn)D,E是半圓O上的三等分點(diǎn),C是弧DE上的一個(gè)動(dòng)點(diǎn),連結(jié)AC和BC,點(diǎn)I是△ABC的內(nèi)心,若⊙O的半徑為3,當(dāng)點(diǎn)C從點(diǎn)D運(yùn)動(dòng)到點(diǎn)E時(shí),點(diǎn)I隨之運(yùn)動(dòng)形成的路徑長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)組織學(xué)生到商場(chǎng)參加社會(huì)實(shí)踐活動(dòng),他們參與了某種品牌運(yùn)動(dòng)鞋的銷售工作,已知該運(yùn)動(dòng)鞋每雙的進(jìn)價(jià)為120元,為尋求合適的銷售價(jià)格進(jìn)行了4天的試銷,試銷情況如表所示:
(1)觀察表中數(shù)據(jù),x,y滿足什么函數(shù)關(guān)系?請(qǐng)求出這個(gè)函數(shù)關(guān)系式;
(2)若商場(chǎng)計(jì)劃每天的銷售利潤(rùn)為3000元,則其單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校為了解本校學(xué)生平均每天的體育活動(dòng)時(shí)間情況,隨機(jī)抽取部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,并將調(diào)查結(jié)果人數(shù)分為A,B,C,D四個(gè)等級(jí)設(shè)活動(dòng)時(shí)間為t(小時(shí)),A:t<1,B:1≤t<1.5,C:1.5≤t<2,D:t≥2,根據(jù)調(diào)查結(jié)果繪制了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)圖中信息解答下列問(wèn)題:
(1)該校共調(diào)查了多少名學(xué)生;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)求出表示A等級(jí)的扇形圓心角的度數(shù);
(4)在此次問(wèn)卷調(diào)查中,甲班有2人平均每天大課間活動(dòng)時(shí)間不足1小時(shí),乙班有3人平均每天大課間活動(dòng)時(shí)間不足1小時(shí),若從這5人中任選2人去參加座談,試用列表或畫(huà)樹(shù)狀圖的方法求選出的2人來(lái)自不同班級(jí)的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com