如圖,在平面直角坐標(biāo)系中,點(diǎn)B的坐標(biāo)為(-8,0),△ABO是直角三角形,且OA=10,將△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到△A′B′O
(1)求點(diǎn)A′的坐標(biāo);
(2)連接AA′,求△AOA′的面積;
(3)拋物線y=ax2+bx+c經(jīng)過點(diǎn)A′、B′和點(diǎn)C(-1,1),求此拋物線的解析式;
(4)若P是(3)中的拋物線中直線A′O上方的一點(diǎn),求點(diǎn)P到OA′的最大距離.

【答案】分析:(1)根據(jù)Rt△AOB中,OA=10,OB=8,得出AB=6,進(jìn)而得出A′B′=6,OB′=8,從而得出點(diǎn)A′的坐標(biāo);
(2)根據(jù)旋轉(zhuǎn)圖形的性質(zhì)可知,AO=OA′,∠AOA′=90°,從而求出△AOA′面積;
(3)首先求出A′、B′的坐標(biāo),再運(yùn)用待定系數(shù)法求出二次函數(shù)解析式;
(4)首先證明△PMQ∽△OA′B′,從而得出PQ=PM=(-x2+x+8),利用二次函數(shù)最值求出.
解答:解:(1)在Rt△AOB中,OA=10,OB=8
∴AB=6,
∵△AOB≌△A′OB′,
∴A′B′=6,OB′=8,
∴點(diǎn)A′的坐標(biāo)為(6,8);

(2)由題意可知,△AOB≌△A′OB′,
則∠AOB=∠A′OB′,OA=OA′,
∵∠AOB+∠AOB′=90°,
∴∠AOB′+∠A′OB′=90°,
∴△AOA′是等腰直角三角形,
∴△AOA′的面積=×10×10=50;

(3)∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)B′(0,8),
∴c=8,
∴拋物線解析式為y=ax2+bx+8拋物線過點(diǎn)B和A′,
,
解得
∴拋物線的解析式為y=-x2+6x+8;

(4)過點(diǎn)P作x軸的垂線,交OA′于點(diǎn)M,交x軸于N,作PQ⊥OA′于Q,
設(shè)點(diǎn)P的橫坐標(biāo)為x,則點(diǎn)P的縱坐標(biāo)為-x2+6x+8,
點(diǎn)M的橫坐標(biāo)為x縱坐標(biāo)為x,
∴PM=-x2+6x+8-x=-x2+x+8,
易證△PMQ∽△OA′B′,
∴PQ=PM=(-x2+x+8)=-x+x+=-(x-2+
∴PQ的最大值為
點(diǎn)評:此題主要考查了二次函數(shù)的綜合應(yīng)用以及旋轉(zhuǎn)的性質(zhì),題目考查知識比較全面,將旋轉(zhuǎn)與相似融入的題目中,增加了題目的趣聞性,題目設(shè)計(jì)層層遞進(jìn),做題過程中一定細(xì)心.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案