【題目】如圖,AC和BD相交于O點(diǎn),若OA=OD,用“SAS”證明△AOB≌△DOC還需( )
A.AB=DC
B.OB=OC
C.∠C=∠D
D.∠AOB=∠DOC
【答案】B
【解析】解:A、AB=DC,不能根據(jù)SAS證兩三角形全等,故本選項(xiàng)錯(cuò)誤; B、∵在△AOB和△DOC中
,
∴△AOB≌△DOC(SAS),故本選項(xiàng)正確;
C、兩三角形相等的條件只有OA=OD和∠AOB=∠DOC,不能證兩三角形全等,故本選項(xiàng)錯(cuò)誤;
D、根據(jù)∠AOB=∠DOC和OA=OD,不能證兩三角形全等,故本選項(xiàng)錯(cuò)誤;
故選B.
添加AB=DC,不能根據(jù)SAS證兩三角形全等;根據(jù)條件OA=OD和∠AOB=∠DOC,不能證兩三角形全等;添加∠AOB=∠DOC,不能證兩三角形全等;根據(jù)以上結(jié)論推出即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與x軸,y軸分別交于點(diǎn)A,點(diǎn)B,兩動(dòng)點(diǎn)D,E分別從點(diǎn)A,點(diǎn)B同時(shí)出發(fā)向點(diǎn)O運(yùn)動(dòng)(運(yùn)動(dòng)到點(diǎn)O停止),運(yùn)動(dòng)速度分別是1個(gè)單位長(zhǎng)度/秒和個(gè)單位長(zhǎng)度/秒,設(shè)運(yùn)動(dòng)時(shí)間為t秒,以點(diǎn)A為頂點(diǎn)的拋物線經(jīng)過點(diǎn)E,過點(diǎn)E作x軸的平行線,與拋物線的另一個(gè)交點(diǎn)為點(diǎn)G,與AB相交于點(diǎn)F.
(1)求點(diǎn)A,點(diǎn)B的坐標(biāo);
(2)用含t的代數(shù)式分別表示EF和AF的長(zhǎng);
(3)當(dāng)四邊形ADEF為菱形時(shí),試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時(shí)拋物線的解析式;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長(zhǎng)為2的正方形ABCD中剪去一個(gè)邊長(zhǎng)為1的小正方形CEFG,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿A→D→E→F→G→B的路線繞多邊形的邊勻速運(yùn)動(dòng)到點(diǎn)B時(shí)停止(不含點(diǎn)A和點(diǎn)B),則△ABP的面積S隨著時(shí)間t變化的函數(shù)圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長(zhǎng)為2,E是邊BC上的動(dòng)點(diǎn),BF⊥AE交CD于點(diǎn)F,垂足為G,連結(jié)CG.下列說法:①AG>GE;②AE=BF;③點(diǎn)G運(yùn)動(dòng)的路徑長(zhǎng)為π;④CG的最小值為.其中正確的說法是 .(把你認(rèn)為正確的說法的序號(hào)都填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】向東行進(jìn)-30米表示的意義是( )
A.向東行進(jìn)30米
B.向東行進(jìn)-30米
C.向西行進(jìn)30米
D.向西行進(jìn)-30米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】獲2019年度諾貝爾化學(xué)獎(jiǎng)的“鋰電池”創(chuàng)造了一個(gè)更清潔的世界.我國(guó)新能源發(fā)展迅猛,某種特型鋰電池2016年銷售量為8萬個(gè),到2018年銷售量為97萬個(gè).設(shè)年均增長(zhǎng)率為x,可列方程為( 。
A.8(1+x)2=97B.97(1﹣x)2=8C.8(1+2x)=97D.8(1+x2)=97
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=120°,AE=BE,D為EC中點(diǎn).
(1)求∠CAE的度數(shù);
(2)求證:△ADE是等邊三角形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com