【題目】小明有兩根3cm、7cm的木棒,他想以這兩根木棒為邊做一個三角形,下列不能選用的木棒長為( 。
A.7cm
B.8cm
C.9cm
D.10cm

【答案】D
【解析】解:7﹣3=4,7+3=10,因而4<第三根木棒<10,只有D中的10不滿足.
故選D.
【考點精析】本題主要考查了三角形三邊關(guān)系的相關(guān)知識點,需要掌握三角形兩邊之和大于第三邊;三角形兩邊之差小于第三邊;不符合定理的三條線段,不能組成三角形的三邊才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校數(shù)學(xué)興趣小組為測得校園里旗桿AB的高度,在操場的平地上選擇一點C,測得旗桿頂端A的仰角為30°,再向旗桿的方向前進(jìn)16米,到達(dá)點D處(C、D、B三點在同一直線上),又測得旗桿頂端A的仰角為45°,請計算旗桿AB的高度(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著人們生活水平的提高,家用轎車越來越多地進(jìn)入家庭,小明家中買了一輛小轎車,他連續(xù)記錄了7天中每天行駛的路程(如下表),以50 km為標(biāo)準(zhǔn),多于50 km的記為“+”,不足50 km的記為“-”,剛好50 km的記為“0”

第一天

第二天

第三天

第四天

第五天

第六天

第七天

路程(km)

8

11

14

0

16

41

8

(1)請求出這七天中平均每天行駛多少千米?

(2)若每天行駛100 km需用汽油6升,汽油價6.2/升,請估計小明家一個月(30天計)的汽油費用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代互聯(lián)網(wǎng)技術(shù)的廣泛應(yīng)用,催生了快遞行業(yè)的高速發(fā)展.小明計劃給朋友快遞一部分物品,經(jīng)了解有甲、乙兩家快遞公司比較合適.甲公司表示:快遞物品不超過1千克的,按每千克22元收費;超過1千克,超過的部分按每千克15元收費.乙公司表示:按每千克16元收費,另加包裝費3元.設(shè)小明快遞物品x千克.

1)請分別寫出甲、乙兩家快遞公司快遞該物品的費用y(元)與x(千克)之間的函數(shù)關(guān)系式;

2)小明選擇哪家快遞公司更省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)海洋權(quán)益,新組建的國家海洋局加大了在南海的巡邏力度。一天,我兩艘海監(jiān)船剛好在我某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍的船只停在C處海域。如圖所示,AB=60海里,在B處測得C在北偏東45的方向上,A處測得C在北偏西30的方向上,在海岸線AB上有一燈塔D,測得AD=120海里。

(1)(4分)分別求出A與C及B與C的距離AC,BC(結(jié)果保留根號)

(2)(5分)已知在燈塔D周圍100海里范圍內(nèi)有暗礁群,我在A處海監(jiān)船沿AC前往C處盤查,途中有無觸礁的危險?(參考數(shù)據(jù):=1.41,=1.73,=2.45)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①若三角形一邊上的中線和這邊上的高重合,則這個三角形是等腰三角形;

②若等腰三角形一腰上的高與底邊的夾角為20°,則頂角為40°;

③如果直角三角形的兩邊長分別為3、4,那么斜邊長為5;

④斜邊上的高和一直角邊分別相等的兩個直角三角形全等.

其中正確的說法有( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016云南省第22題)草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價不低于成本單價,也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式(也稱關(guān)系式)

(2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的一個內(nèi)角等于80°,則它的另外兩個角是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016湖南省岳陽市第24題)如圖,直線y=x+4交于x軸于點A,交y軸于點C,過A、C兩點的拋物線F1交x軸于另一點B(1,0).

(1)求拋物線F1所表示的二次函數(shù)的表達(dá)式;

(2)若點M是拋物線F1位于第二象限圖象上的一點,設(shè)四邊形MAOC和BOC的面積分別為S四邊形MAOC和SBOC,記S=S四邊形MAOCSBOC,求S最大時點M的坐標(biāo)及S的最大值;

(3)如圖,將拋物線F1沿y軸翻折并復(fù)制得到拋物線F2,點A、B與(2)中所求的點M的對應(yīng)點分別為A、B、M,過點M作MEx軸于點E,交直線AC于點D,在x軸上是否存在點P,使得以A、D、P為頂點的三角形與ABC相似?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案