【題目】家用電滅蚊器的發(fā)熱部分使用了PTC發(fā)熱材料,它的電阻R(kΩ)隨溫度t(℃)(在一定范圍內)變化的大致圖象如圖所示.通電后,發(fā)熱材料的溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關系,且在溫度達到30℃時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ.
(1)求當10≤t≤30時,R和t之間的關系式;
(2)求溫度在30℃時電阻R的值;并求出t≥30時,R和t之間的關系式;
(3)家用電滅蚊器在使用過程中,溫度在什么范圍內時,發(fā)熱材料的電阻不超過6 kΩ?
【答案】解:(1)∵溫度在由室溫10℃上升到30℃的過程中,電阻與溫度成反比例關系,
∴可設R和t之間的關系式為R=,
將(10,6)代入上式中得:6=,
k=60.
故當10≤t≤30時,R=;
(2)將t=30℃代入上式中得:R=,R=2.
∴溫度在30℃時,電阻R=2(kΩ).
∵在溫度達到30℃時,電阻下降到最小值;隨后電阻隨溫度升高而增加,溫度每上升1℃,電阻增加kΩ,
∴當t≥30時,
R=2+(t﹣30)=t﹣6;
(3)把R=6(kΩ),代入R=t﹣6得,t=45(℃),
所以,溫度在10℃~45℃時,電阻不超過6kΩ.
【解析】(1)設關系為R= , 將(10,6)代入求k;
(2)將t=30℃代入關系式中求R’,由題意得R=R’+(t﹣30);
(3)將R=6代入R=R’+(t﹣30)求出t.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明同學用自制的直角三角形紙板DEF測量樹的高度AB,他調整自己的位置,設法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條直角邊DE=0.4m,EF=0.2cm,測得邊DF離地面的高度AC=1.5m,CD=8m,求樹高.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABD與△AEC都是等邊三角形,AB≠AC.下列結論中,正確的是 .
①BE=CD;②∠BOD=60°;③△BOD∽△COE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用木條制成如圖的形式,A、B、C三點釘上釘子,在D和D′處加上粉筆,當用D′畫圖時,在D處的筆同時也畫出一個圖形.請問:這樣畫出的兩個圖形是相似圖形嗎?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在等腰三角形ABC中,AB=AC=4,BC=7.如圖2,在底邊BC上取一點D,連結AD,使得∠DAC=∠ACD.如圖3,將△ACD沿著AD所在直線折疊,使得點C落在點E處,連結BE,得到四邊形ABED.則BE的長是( )
A.4
B.
C.3
D.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學活動課上,某學習小組對有一內角為120°的平行四邊形ABCD(∠BAD=120°)進行探究:將一塊含60°的直角三角板如圖放置在平行四邊形ABCD所在平面內旋轉,且60°角的頂點始終與點C重合,較短的直角邊和斜邊所在的兩直線分別交線段AB,AD于點E,F(xiàn)(不包括線段的端點).
(1)初步嘗試
如圖1,若AD=AB,求證:①△BCE≌△ACF,②AE+AF=AC;
(2)類比發(fā)現(xiàn)
如圖2,若AD=2AB,過點C作CH⊥AD于點H,求證:AE=2FH;
(3)深入探究
如圖3,若AD=3AB,探究得: 的值為常數(shù)t,則t= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=2,點P是這個菱形內部或邊上的一點,若以點P、B、C為頂點的三角形是等腰三角形,則P、D(P、D兩點不重合)兩點間的最短距離為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2 , 并直接寫出點B2、C2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com