【題目】如圖,在等腰△ABC中,AB=AC,點(diǎn)D在AC邊上,點(diǎn)E在BC邊上,且∠AED=∠B,若AB=10,BE=5,AE=2 ,則線段CE的長(zhǎng)為(
A.
B.8
C.2
D.9

【答案】B
【解析】解:∵AB=AC,

∴∠B=∠C,

∵∠AED=∠B,

∴∠AED=∠C,

∵∠EAD=∠CAE,

∴△ACE∽△AED,

,即 ,

∴AD=6,

∴CD=4,

∵∠B=∠C=∠AED,

∴∠BAE=180°﹣∠B﹣∠AEB,∠DEC=180°﹣∠AEB﹣∠AED,

∴∠BAE=∠DEC,

∴△ABE∽△ECD,

,即 = ,

∴CE=8.

故選B.

【考點(diǎn)精析】通過(guò)靈活運(yùn)用等腰三角形的性質(zhì)和相似三角形的判定與性質(zhì),掌握等腰三角形的兩個(gè)底角相等(簡(jiǎn)稱:等邊對(duì)等角);相似三角形的一切對(duì)應(yīng)線段(對(duì)應(yīng)高、對(duì)應(yīng)中線、對(duì)應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長(zhǎng)的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠ACB=90°,點(diǎn)O為△ABC的三條角平分線的交點(diǎn),OD⊥BC,OE⊥AC,OF⊥AB,點(diǎn)D,E,F(xiàn)是垂足,且AB=5,BC=4,AC=3,則點(diǎn)O到三邊AB,AC,BC的距離分別是( )

A. 1,1,1 B. 2,2,2 C. 1,1.5,2 D. 無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,∠C>B.如圖①,ADBC于點(diǎn)D,AE平分∠BAC

1)如圖①,ADBC于點(diǎn)D,AE平分∠BAC,能猜想出∠DAE與∠B、∠C之間的關(guān)系是什么?并說(shuō)明理由.

2)如圖②,AE平分∠BACFAE上的一點(diǎn),且FDBC于點(diǎn)D,這時(shí)∠EFD與∠B、∠C有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由.

3)如圖③,AE平分∠BAC,FAE延長(zhǎng)線上的一點(diǎn),FDBC于點(diǎn)D,請(qǐng)你寫(xiě)出這時(shí)∠EFD與∠B、∠C之間的數(shù)量關(guān)系(只寫(xiě)結(jié)論,不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠C=90°,AC=10,BC=5,AXAC,點(diǎn)P和點(diǎn)QA點(diǎn)出發(fā),分別在線段AC和射線AX上運(yùn)動(dòng),且AB=PQ,當(dāng)點(diǎn)P運(yùn)動(dòng)到AP=_______________時(shí),ABCQPA全等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,使∠AOC:∠BOC21,將直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM在直線AB的下方.

1)在圖1中,∠AOC   °,∠MOC   °;

2)將圖1中的三角板按圖2的位置放置,使得OM在射線QA上,求∠CON的度數(shù);

3)將上述直角三角板按圖3的位置放置,OM在∠BOC的內(nèi)部,說(shuō)明∠BON﹣∠COM的值固定不變.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角梯形AOCD的邊OC在x軸上,O為坐標(biāo)原點(diǎn),CD垂直于x軸,D(5,4),AD=2.若動(dòng)點(diǎn)E、F同時(shí)從點(diǎn)O出發(fā),E點(diǎn)沿折線OA→AD→DC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止;F點(diǎn)沿OC運(yùn)動(dòng),到達(dá)C點(diǎn)時(shí)停止,它們運(yùn)動(dòng)的速度都是每秒1個(gè)單位長(zhǎng)度.設(shè)E運(yùn)動(dòng)x秒時(shí),△EOF的面積為y(平方單位),則y關(guān)于x的函數(shù)圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠ABC=60°,AB的垂直平分線分別交ABAC于點(diǎn)D和點(diǎn)E.CE=2,則AB的長(zhǎng)是_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線ABCD相交于點(diǎn)O,OFOD分別是∠AOE,∠BOE的平分線.

(1)寫(xiě)出∠DOE的補(bǔ)角;

(2)若∠BOE62°,求∠AOD和∠EOF的度數(shù);

(3)試問(wèn)射線ODOF之間有什么特殊的位置關(guān)系?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A(3,0),B(﹣1,0)兩點(diǎn),與y軸相交于點(diǎn)C(0,﹣3)

(1)求該二次函數(shù)的解析式;
(2)設(shè)E是y軸右側(cè)拋物線上異于點(diǎn)A的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的平行線交拋物線于另一點(diǎn)F,過(guò)點(diǎn)F作FG垂直于x軸于點(diǎn)G,再過(guò)點(diǎn)E作EH垂直于x軸于點(diǎn)H,得到矩形EFGH,則在點(diǎn)E的運(yùn)動(dòng)過(guò)程中,當(dāng)矩形EFGH為正方形時(shí),求出該正方形的邊長(zhǎng);
(3)設(shè)P點(diǎn)是x軸下方的拋物線上的一個(gè)動(dòng)點(diǎn),連接PA、PC,求△PAC面積的取值范圍,若△PAC面積為整數(shù)時(shí),這樣的△PAC有幾個(gè)?

查看答案和解析>>

同步練習(xí)冊(cè)答案