(本題滿分6分)如圖,在梯形ABCD中,AD∥BC,BD=CD,AB<CD,且∠ABC為
銳角,AD=4,BC=12,點(diǎn)E為BC上一動(dòng)點(diǎn)。試求:當(dāng)CE為何值時(shí),四邊形ABED是等腰梯
形?
解:如圖所示,過(guò)A作AE∥CD,交BC于E,……1分

∵四邊形AECD是平行四邊形
∴AE="CD=BD                           " ……3分
又∵梯形ABED的對(duì)角線相等,
∴四邊形ABED是等腰梯形,             ……4分
∴CE="AD=4                             " ……6分
(不同于此標(biāo)答的其他解法,參照此標(biāo)答給分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知菱形的邊長(zhǎng)為6,一個(gè)內(nèi)角為,則菱形較短的對(duì)角線長(zhǎng)是(  )
A.B.C.3D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,已知矩形紙片,點(diǎn)的中點(diǎn),點(diǎn)上的一點(diǎn),
,現(xiàn)沿直線將紙片折疊,使點(diǎn)落在紙片上的點(diǎn)處,連結(jié),則與
相等的角的個(gè)數(shù)為                                            【    】  
A.4B.3C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在□ABCD中,AB = 8,AD = 5,sinA = ,E是DC上一點(diǎn),且BE = BC,則DE的長(zhǎng)為
A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(11·貴港)如圖所示,將兩張等寬的長(zhǎng)方形紙條交叉疊放,重疊部分是一個(gè)四
邊形ABCD,若AD=6cm,∠ABC=60°,則四邊形ABCD的面積等于_  ▲  cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

把三張大小相同的正方形卡片A,B,C疊放在一個(gè)底面為正方形的盒底上,底面未被卡片覆蓋的部分用陰影表示.若按圖3擺放時(shí),陰影部分的面積為S1;若按圖4擺放時(shí),陰影部分的面積為S2,則S1      S2(填“>”、“<”或“=”).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分10分)
如圖1,正方形ABCD和正方形QMNP,∠M =∠B,M是正方形ABCD的對(duì)稱中心,MN交AB于F,QM交AD于E.
⑴求證:ME = MF.
⑵如圖2,若將原題中的“正方形”改為“菱形”,其他條件不變,探索線段ME與線段MF的關(guān)系,并加以證明.
⑶如圖3,若將原題中的“正方形”改為“矩形”,且AB = mBC,其他條件不變,探索線段ME與線段MF的關(guān)系,并說(shuō)明理由.
⑷根據(jù)前面的探索和圖4,你能否將本題推廣到一般的平行四邊形情況?若能,寫出推廣命題;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2011年青海,16,3分)已知菱形ABCD的對(duì)角線AC、BD的長(zhǎng)度是6和8,則這個(gè)菱形的周長(zhǎng)是(  )
A.  20         B. 14       C.28       D.24

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一個(gè)多邊形的內(nèi)角和是外角和的2倍,則這個(gè)多邊形的邊數(shù)為(    )
A.4B.5C.6D.7

查看答案和解析>>

同步練習(xí)冊(cè)答案