【題目】如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O,B重合),作EC⊥OB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AF⊥PC于點F,連接CB.
(1)求證:AC平分∠FAB;
(2)求證:BC2=CECP;
(3)當AB=4且=時,求劣弧的長度.
【答案】(1)證明見解析;(2)證明見解析;(3).
【解析】(1)根據(jù)已知先證明∠ACF=∠ACE,再根據(jù)等角的余角相等即可證得;
(2)只要證明△CBE∽△CPB,可得即可解決問題;
(3)作BM⊥PF于M,則CE=CM=CF,設CE=CM=CF=3a,PC=4a,PM=a,利用相似三角形的性質求出BM,求出tan∠BCM的值即可解決問題;
(1)∵AB是直徑,
∴∠ACB=90°,
∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,
∵∠BCP=∠BCE,
∴∠ACF=∠ACE,
∵∠AFC=90°,∠AEC=90°,
∴∠FAC=∠EAC,
即AC平分∠FAB;
(2)∵OC=OB,
∴∠OCB=∠OBC,
∵PF是⊙O的切線,CE⊥AB,
∴∠OCP=∠CEB=90°,
∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,
∴∠BCE=∠BCP,
∵CD是直徑,
∴∠CBD=∠CBP=90°,
∴△CBE∽△CPB,
∴,
∴BC2=CECP;
(3)如圖,作BM⊥PF于M.則CE=CM=CF,
設CE=CM=CF=3a,PC=4a,PM=a,
∵∠MCB+∠P=90°,∠P+∠PBM=90°,
∴∠MCB=∠PBM,
∵CD是直徑,BM⊥PC,
∴∠CMB=∠BMP=90°,
∴△BMC∽△PMB,
∴,
∴BM2=CMPM=3a2,
∴BM=a,
∴tan∠BCM=,
∴∠BCM=30°,
∴∠OCB=∠OBC=∠BOC=60°,∠BOD=120°,
∴的長=.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=CB,∠ABC=90°,D為AB延長線上一點,點E在BC邊上,且BE=BD,連接AE、DE、DC。
(1)求證:△ABE≌△CBD;
(2)若∠CAE=30°,求∠BCD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:關于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整數(shù)).
(1)求證:方程有兩個不相等的實數(shù)根;
(2)若方程的兩個實數(shù)根都是整數(shù),求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖平面直角坐標系中,A點坐標為(0,1),AB=BC=,∠ABC=90°,CD⊥x軸.
(1)填空:B點坐標為 ,C點坐標為 .
(2)若點P是直線CD上第一象限上一點且△PAB的面積為6.5,求P點的坐標;
(3)在(2)的條件下點M是x軸上線段OD之間的一動點,當△PAM為等腰三角形時,直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,正比例函數(shù)的圖像與反比例函數(shù)的圖像都經(jīng)過點A(2,m).
(1)求反比例函數(shù)的解析式;
(2)點B在軸的上,且OA=BA,反比例函數(shù)圖像上有一點C,且∠ABC=90°,求點C坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB=AC,∠A=36°,AB的垂直平分線MD交AC于點D,AB于M,以下結論:①△BCD是等腰三角形;②射線BD是△ACB的角平分線;③△BCD的周長C△BCD=AC+BC;④△ADM≌BCD.正確的有( )
A.①②③B.①②C.①③D.③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某游泳館推出了兩種收費方式.
方式一:顧客先購買會員卡,每張會員卡200元,僅限本人一年內(nèi)使用,憑卡游泳,每次游泳再付費30元.
方式二:顧客不購買會員卡,每次游泳付費40元.
設小亮在一年內(nèi)來此游泳館的次數(shù)為x次,選擇方式一的總費用為y1(元),選擇方式二的總費用為y2(元).
(1)請分別寫出y1,y2與x之間的函數(shù)表達式.
(2)若小亮一年內(nèi)來此游泳館的次數(shù)為15次,選擇哪種方式比較劃算?
(3)若小亮計劃拿出1400元用于在此游泳館游泳,采用哪種付費方式更劃算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,圖①是一個三角形,分別連接三邊中點得圖②,再分別連接圖②中的小三角形三邊中點,得圖③……按此方法繼續(xù)下去.
在第個圖形中有______個三角形(用含的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象相交于點A(m,3)、B(﹣6,n),與x軸交于點C.
(1)求一次函數(shù)y=kx+b的關系式;
(2)結合圖象,直接寫出滿足kx+b>的x的取值范圍;
(3)若點P在x軸上,且S△ACP=S△BOC,求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com