【題目】如圖,在△ABC中,∠B=∠C=∠DEF,點(diǎn)D、E、F分別在AB、AC上,且BD=CE.求證:DE=EF.
證明:(請將下面的證明過程補(bǔ)充完整)
∵∠B+∠BDE+∠BED=180°(______)
∠DEF+∠FEC+∠BED=180°(______)
∠B=∠DEF(已知)
∴∠BDE=∠FEC(______)
在△BDE和△CEF中
∠B=∠C(已知)
BD=CE(______)
∠BDE=∠FEC(______)
∴△BDE≌△CEF(______)(用字母表示)
∴DE=EF(______)
【答案】三角形內(nèi)角和定理,平角的定義,等量代換,已知,已證,ASA,全等三角形對應(yīng)邊相等.
【解析】
由三角形內(nèi)角和定理得出∠B+∠BDE+∠BED=180°,由平角的定義得出∠DEF+∠FEC+∠BED=180°,由等量代換得出∠BDE=∠FEC,由已知BD=CE,由已證∠BDE=∠FEC,由ASA證得△BDE≌△CEF,由全等三角形對應(yīng)邊相等得出DE=EF.
證明:∵∠B+∠BDE+∠BED=180°( 三角形內(nèi)角和定理)
∠DEF+∠FEC+∠BED=180°( 平角的定義)
∠B=∠DEF(已知)
∴∠BDE=∠FEC( 等量代換)
在△BDE和△CEF中,
∠B=∠C(已知)
BD=CE( 已知)
∠BDE=∠FEC( 已證)
∴△BDE≌△CEF( ASA)
∴DE=EF( 全等三角形對應(yīng)邊相等)
故答案為:三角形內(nèi)角和定理,平角的定義,等量代換,已知,已證,ASA,全等三角形對應(yīng)邊相等.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義符號min{a,b}的含義為:當(dāng)a≥b時(shí)min{a,b}=b;當(dāng)a≤b時(shí)min{a,b}=a.如:min{1,-3}=﹣3,min{﹣4,﹣2}=﹣4,則min{﹣x2+2,﹣x}的最大值是( 。
A. ﹣1 B. ﹣2 C. 1 D. 0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省溫州市)小黃準(zhǔn)備給長8m,寬6m的長方形客廳鋪設(shè)瓷磚,現(xiàn)將其劃分成一個(gè)長方形ABCD區(qū)域Ⅰ(陰影部分)和一個(gè)環(huán)形區(qū)域Ⅱ(空白部分),其中區(qū)域Ⅰ用甲、乙、丙三種瓷磚鋪設(shè),且滿足PQ∥AD,如圖所示.
(1)若區(qū)域Ⅰ的三種瓷磚均價(jià)為300元/m2,面積為S(m2),區(qū)域Ⅱ的瓷磚均價(jià)為200元/m2,且兩區(qū)域的瓷磚總價(jià)為不超過12000元,求S的最大值;
(2)若區(qū)域Ⅰ滿足BC=2:3,區(qū)域Ⅱ四周寬度相等.
①求AB,BC的長;
②若甲、丙兩瓷磚單價(jià)之和為300元/m2,乙、丙瓷磚單價(jià)之比為5:3,且區(qū)域Ⅰ的三種瓷磚總價(jià)為4800元,求丙瓷磚單價(jià)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運(yùn)出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.
(1)求甲、乙兩倉庫各存放原料多少噸?
(2)現(xiàn)公司需將300噸原料運(yùn)往工廠,從甲、乙兩個(gè)倉庫到工廠的運(yùn)價(jià)分別為120元/噸和100元/噸.經(jīng)協(xié)商,從甲倉庫到工廠的運(yùn)價(jià)可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運(yùn)價(jià)不變,設(shè)從甲倉庫運(yùn)m噸原料到工廠,請求出總運(yùn)費(fèi)W關(guān)于m的函數(shù)解析式(不要求寫出m的取值范圍);
(3)在(2)的條件下,請根據(jù)函數(shù)的性質(zhì)說明:隨著m的增大,W的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)P在BC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則cos∠ADF的值為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,P是對角線BD上的一點(diǎn),過點(diǎn)C作CQ∥DB,且CQ=DP,連接AP、BQ、PQ.
(1)求證:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求證:四邊形ABQP為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司在甲、乙倉庫共存放某種原料450噸,如果運(yùn)出甲倉庫所存原料的60%,乙倉庫所存原料的40%,那么乙倉庫剩余的原料比甲倉庫剩余的原料多30噸.
(1)求甲、乙兩倉庫各存放原料多少噸?
(2)現(xiàn)公司需將300噸原料運(yùn)往工廠,從甲、乙兩個(gè)倉庫到工廠的運(yùn)價(jià)分別為120元/噸和100元/噸.經(jīng)協(xié)商,從甲倉庫到工廠的運(yùn)價(jià)可優(yōu)惠a元噸(10≤a≤30),從乙倉庫到工廠的運(yùn)價(jià)不變,設(shè)從甲倉庫運(yùn)m噸原料到工廠,請求出總運(yùn)費(fèi)W關(guān)于m的函數(shù)解析式(不要求寫出m的取值范圍);
(3)在(2)的條件下,請根據(jù)函數(shù)的性質(zhì)說明:隨著m的增大,W的變化情況.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了了解七年級名學(xué)生其中數(shù)學(xué)考試情況,從中抽取了名學(xué)生的數(shù)學(xué)成績進(jìn)行了統(tǒng)計(jì),下面個(gè)判斷中正確的有( )個(gè).
①這種調(diào)查的方式是抽樣調(diào)查;②名學(xué)生是總體;③每名學(xué)生的數(shù)學(xué)成績是個(gè)體;④名學(xué)生是總體的一個(gè)樣本;⑤樣本容量是.
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把平面內(nèi)一條數(shù)軸x繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<90°)得到另一條數(shù)軸y,x軸和y軸構(gòu)成一個(gè)平面斜坐標(biāo)系.規(guī)定:過點(diǎn)P作y軸的平行線,交x軸于點(diǎn)A,過點(diǎn)P作x軸的平行線,交y軸于點(diǎn)B,若點(diǎn)A在x軸上對應(yīng)的實(shí)數(shù)為a,點(diǎn)B在y軸上對應(yīng)的實(shí)數(shù)為b,則稱有序?qū)崝?shù)對(a,b)為點(diǎn)P的斜坐標(biāo),在某平面斜坐標(biāo)系中,已知θ=60°,點(diǎn)M′的斜坐標(biāo)為(3,2),點(diǎn)N與點(diǎn)M關(guān)于y軸對稱,則點(diǎn)N的斜坐標(biāo)為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com