已知二次函數(shù)y=mx2+(2m+1)x+m-1的圖象與x軸有兩個(gè)交點(diǎn),則m的取值范圍是( 。
A、m<
1
8
B、m≤
1
8
C、m>-
1
8
且m≠0
D、m≤
1
8
且m≠0
分析:根據(jù)二次函數(shù)y=mx2+(2m+1)x+m-1的圖象與x軸有兩個(gè)交點(diǎn),可得△=(2m+1)2-4m×(m-1)>0且m≠0.
解答:解:∵原函數(shù)是二次函數(shù),
∴m≠0
∵二次函數(shù)y=mx2+(2m+1)x+m-1的圖象與x軸有兩個(gè)交點(diǎn),則
△=b2-4ac>0,
即(2m+1)2-4m×(m-1)>0,
4m2+4m+1-4m2+4m>0,
8m+1>0.
∴m>-
1
8

故選C.
點(diǎn)評(píng):考查二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的個(gè)數(shù)的判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=2x2-mx-4的圖象與x軸的兩個(gè)交點(diǎn)的橫坐標(biāo)的倒數(shù)和為2,則m=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=0.5x2+mx+n的圖象過(guò)點(diǎn)A(-3,6),并與x軸交于點(diǎn)B(-1,0)和精英家教網(wǎng)點(diǎn)C,頂點(diǎn)為P.
(1)求這個(gè)拋物線的解析式;
(2)求線段PC的長(zhǎng);
(3)設(shè)D為線段OC上的一點(diǎn),且∠DPC=∠BAC,求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=ax2+bx+c與一次函數(shù)y=mx+n的圖象交點(diǎn)為(-1,2),(2,5),且二次函數(shù)的最小值為1,則這個(gè)二次函數(shù)的解析式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=-
1
2
x2+mx+
3
2
的圖象經(jīng)過(guò)點(diǎn)A(-3,-6),并且該拋物線與x軸交于B、C兩點(diǎn),與y軸的交點(diǎn)為E,P為拋物線的頂點(diǎn).如圖所示.
(1)求這個(gè)二次函數(shù)表達(dá)式.
(2)設(shè)點(diǎn)D為線段OC上的一點(diǎn),且滿足∠DPC=∠BAC,說(shuō)明直線PC與直線AC的位置關(guān)系,并求出點(diǎn)D的坐標(biāo).
(3)在(1)中的拋物線上是否存在一點(diǎn)F,使S△BCF=
3
4
S△BCP?若存在,請(qǐng)直接寫(xiě)出F點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y+x2+mx+m-2,說(shuō)明:無(wú)論m取何實(shí)數(shù),拋物線總與x軸有兩個(gè)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案