如圖,設(shè)計建造一條道路,路基的橫斷面為梯形ABCD,設(shè)路基高為h,兩側(cè)的坡角分別為α、β.已知h=2米,α=45°,tanβ=數(shù)學(xué)公式,CD=10米.求路基底部AB的寬.

解:過D作DE⊥AB于E,過C作CF⊥AB于F.
Rt△ADE中,∠α=45°,DE=h=2米,
∴CF=DE=h=2(米).
Rt△BCF中,tanβ=,CF=h=2(米),
∴BF=2CF=4(米).
故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(米).
答:路基底部AB的寬為16米.
分析:分別過D、C作下底AB的垂線,設(shè)垂足為E、F.在Rt△ADE和Rt△BCF中,可根據(jù)h的長以及坡角的度數(shù)或坡比的值,求出AE、BF的長,進而可求得AB的值.
點評:此題主要考查了坡度問題的應(yīng)用,坡度、坡角問題通常要轉(zhuǎn)換為解直角三角形的問題,必要時應(yīng)添加輔助線,構(gòu)造出直角三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)計建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設(shè)路基高為精英家教網(wǎng)h,兩側(cè)的坡角分別為α和β,已知h=2,α=45°,tanβ=
12
,CD=10.
(1)求路基底部AB的寬;
(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南開區(qū)二模)如圖,設(shè)計建造一條道路,路基的橫斷面為梯形ABCD,設(shè)路基高為h,兩側(cè)的坡角分別為α、β.已知h=2米,α=45°,tanβ=
12
,CD=10米.求路基底部AB的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第4章《銳角三角形》中考題集(29):4.3 解直角三角形及其應(yīng)用(解析版) 題型:解答題

設(shè)計建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設(shè)路基高為h,兩側(cè)的坡角分別為α和β,已知h=2,α=45°,tanβ=,CD=10.
(1)求路基底部AB的寬;
(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年天津市南開區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,設(shè)計建造一條道路,路基的橫斷面為梯形ABCD,設(shè)路基高為h,兩側(cè)的坡角分別為α、β.已知h=2米,α=45°,tanβ=,CD=10米.求路基底部AB的寬.

查看答案和解析>>

同步練習(xí)冊答案