【題目】如圖,在ABCD中,過點DDEAB于點E,點F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形;

(2)已知∠DAB=60°,AF是∠DAB的平分線,若AD=3,求DC的長度.

【答案】(1)證明見解析;(2)CD=.

【解析】

(1)由題意可證四邊形DFBE是平行四邊形,且DEAB,可得結(jié)論;(2)根據(jù)直角三角形的邊角關(guān)系可求DE的長度,則可得BF的長度,即可求CD的長度.

證明(1)∵四邊形ABCD是平行四邊形,

DCAB,DC=AB,

CF=AE

DF=BEDCAB,

∴四邊形DFBE是平行四邊形,

又∵DEAB,

∴四邊形DFBE是矩形.

(2)∵∠DAB=60°,AD=3,DEAB,

AE=,DE=AE=

∵四邊形DFBE是矩形

BF=DE=

AF平分∠DAB

∴∠FAB=DAB=30°,且BFAB

AB=BF=

CD=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為O的直徑,C、D為O上的兩點,BAC=DAC,過點C做直線EFAD,交AD的延長線于點E,連接BC.

(1)求證:EF是O的切線;

(2)若DE=1,BC=2,求劣弧的長l.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】疫情防控,我們一直在堅守.某居委會組織兩個檢查組,分別對居民體溫居民安全出行的情況進行抽查.若這兩個檢查組在轄區(qū)內(nèi)的某三個校區(qū)中各自隨機抽取一個小區(qū)進行檢查,則他們恰好抽到同一個小區(qū)的概率是(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線與直線AB相交于A,B兩點,其中,

1)求該拋物線的函數(shù)表達式;

2)點P為直線AB下方拋物線上的任意一點,連接PA,PB,求面積的最大值;

3)將該拋物線向右平移2個單位長度得到拋物線,平移后的拋物線與原拋物線相交于點C,點D為原拋物線對稱軸上的一點,在平面直角坐標(biāo)系中是否存在點E,使以點B,CD,E為頂點的四邊形為菱形,若存在,請直接寫出點E的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形中,,,,P為線段上的一動點,且和B、C不重合,連接,過點P交射線于點E

聰聰根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對這個問題進行了研究:

1)通過推理,他發(fā)現(xiàn),請你幫他完成證明.

2)利用幾何畫板,他改變的長度,運動點P,得到不同位置時,、的長度的對應(yīng)值:

當(dāng)時,得表1

1

2

3

4

5

0.83

1.33

1.50

1.33

0.83

當(dāng)時,得表2

1

2

3

4

5

6

7

1.17

2.00

2.50

2.67

2.50

2.00

1.17

這說明,點P在線段上運動時,要保證點E總在線段上,的長度應(yīng)有一定的限制.

①填空:根據(jù)函數(shù)的定義,我們可以確定,在的長度這兩個變量中,_____的長度為自變量,_____的長度為因變量;

②設(shè),當(dāng)點P在線段上運動時,點E總在線段上,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax22x3經(jīng)過點A(﹣3,0),P是拋物線上的一個動點.

1)求該函數(shù)的表達式;

2)如圖所示,點P是拋物線上在第二象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t,連接ACPA,PC.求△ACP的面積S關(guān)于t的函數(shù)關(guān)系式,并求出△ACP的面積最大時點P的坐標(biāo).

3)連接BC,在拋物線上是否存在點P,使得∠PCA=∠OCB?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2bx5a,b是常數(shù),a0)的圖象與x軸交于點A(-10)和點B5,0).動直線ytt為常數(shù))與拋物線交于不同的兩點PQ(點PQ的左側(cè)).

1)求拋物線的解析式;

2)動直線yty軸交于點C,若CQ=3CP,求t的值;

3)將拋物線yax2bx5x軸下方的部分沿x軸翻折,若動直線yt與翻折后的圖像交于點M、N,點M、N能否是線段PQ的三等分點?若能,求PQ的長度;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線, 軸于點,上的點,以為邊作正方形恰好落在上,已知,則的值為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+ca0)與x軸交于A﹣2,0)、B4,0)兩點,與y軸交于點C,且OC=2OA

1)試求拋物線的解析式;

2)直線y=kx+1k0)與y軸交于點D,與拋物線交于點P,與直線BC交于點M,記m=,試求m的最大值及此時點P的坐標(biāo);

3)在(2)的條件下,點Qx軸上的一個動點,點N是坐標(biāo)平面內(nèi)的一點,是否存在這樣的點Q、N,使得以P、D、Q、N四點組成的四邊形是矩形?如果存在,請求出點N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案