如圖,AB是半圓O的直徑,AD為弦,∠DBC=∠A.
(1)求證:BC是半圓O的切線;
(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的長.

【答案】分析:(1)若證明BC是半圓O的切線,利用切線的判定定理:即證明AB⊥BC即可;
(2)因為OC∥AD,可得∠BEC=∠D=90°,再有其他條件可判定△BCE∽△BAD,利用相似三角形的性質:對應邊的比值相等即可求出AD的長.
解答:(1)證明:∵AB是半圓O的直徑,
∴BD⊥AD,
∴∠DBA+∠A=90°,
∵∠DBC=∠A,
∴∠DBA+∠DBC=90°即AB⊥BC,
∴BC是半圓O的切線;                                                 

(2)解:∵OC∥AD,
∴∠BEC=∠D=90°,
∵BD⊥AD,BD=6,
∴BE=DE=3,
∵∠DBC=∠A,
∴△BCE∽△BAD,
,即
∴AD=4.5
點評:本題考查了切線的判定.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.同時考查了相似三角形的判定和性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,AC是弦,點P從點B開始沿BA邊向點A以1cm/s的速度移動,若AB長為10cm,點O到AC的距離為4cm.
(1)求弦AC的長;
(2)問經(jīng)過幾秒后,△APC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,AB是半圓O的直徑,OD是半徑,BM切半圓于點B,OC與弦AD平行交BM于點C.
(1)求證:CD是半圓O的切線;
(2)若AB的長為4,點D在半圓O上運動,當AD的長為1時,求點A到直線CD的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AB是半圓O的直徑,點D是半圓上一動點,AB=10,AC=8,當△ACD是等腰三角形時,點D到AB的距離是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,以OA為直徑的半圓O′與弦AC交于點D,O′E∥AC,并交OC于點E,則下列結論:①S△O′OE=
1
2
S△AOC2;②點D時AC的中點;③
AC
=2AD;④四邊形O′DEO是菱形.其中正確的結論是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AB是半圓O的直徑,過點O作弦AD的垂線交半圓O于點E,F(xiàn)為垂足,交AC于點C使∠BED=∠C.請判斷直線AC與圓O的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案