【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,求球的半徑長.

【答案】球的半徑長為2.5 cm.

【解析】

EF的中點M,作MNADBC于點N,MN經(jīng)過球心O,連接OF,設(shè)OF=,則OM=4,MF=2,然后在RtMOF中利用勾股定理求得OF的長即可.

:如圖,EF的中點M,MNADBC于點N,MN經(jīng)過球心O,連接OF.

四邊形ABCD是矩形,C=D=90°,

四邊形CDMN是矩形,MN=CD=4,

設(shè)OF=x,ON=OF,

OM=MN-ON=4-x,MF=2,

RtOMF,OM2+MF2=OF2,

(4-x)2+22=x2,解得x=2.5.

:球的半徑長為2.5 cm.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.某酒廠生產(chǎn)A,B兩種品牌的酒,平均每天兩種酒共可售出600瓶,每種酒每瓶的成本和售價如表所示,設(shè)平均每天共獲利y元,平均每天售出A種品牌的酒x.

A

B

成本(元)

50

35

售價(元)

70

50

1)請寫出y關(guān)于x的函數(shù)關(guān)系式;

2)如果該廠每天至少投入成本25000元,且售出的B種品牌的酒不少于全天銷售總量的55%,那么共有幾種銷售方案?并求出每天至少獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①若一個角的余角是62°,則它的補角的度數(shù)為118°;②32xy3是四次單項式;③;④兩根木條,一根長20cm,另一根長24cm,將它們一端重合且放在同一條直線上,此時兩根木條的中點之間的距離為2cm,其中說法正確的個數(shù)有( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上點A表示數(shù)a,點C表示數(shù)c,且|a+10|+c2020.我們把數(shù)軸上兩點之間的距離用表示兩點的大寫字母一起標記,比如,點A與點B之間的距離記作AB

1)求ac的值;

2)已知點D為數(shù)軸上一動點,且滿足CD+AD32,直接寫出點D表示的數(shù);

3)動點B從數(shù)1對應(yīng)的點開始向右運動,速度為每秒1個單位長度.同時點AC在數(shù)軸上運動,點AC的速度分別為每秒3個單位長度、每秒4個單位長度,運動時間為t秒:

①若點A向右運動,點C向左運動,ABBC,求t的值;

②若點A向左運動,點C向右運動,2ABm×BC的值不隨時間t的變化而改變,請求出m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人玩石頭、剪刀、布游戲,他們在不透明的袋子中放入形狀、大小均相同的12張卡片,其中寫有石頭”“剪刀”“的卡片張數(shù)分別為3、4、5,兩人各隨機摸出一張卡片(先摸者不放回卡片)來比勝負,并約定:石頭剪刀”,“剪刀”,“石頭,但同種卡片不分勝負.

(1)若甲先摸,則他摸出石頭的概率是多少?

(2)若甲先摸出石頭,則乙獲勝的概率是多少?

(3)若甲先摸,則他摸出哪種卡片獲勝的可能性最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象過點(4,3)、(3,0).

(1)求b、c的值;

(2)求出該二次函數(shù)圖象的頂點坐標和對稱軸;

(3)在下圖中作出此二次函數(shù)的圖象,根據(jù)圖象說明,當(dāng)x取何值時,y<0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】己知:如圖1,⊙O的半徑為2, BC是⊙O的弦,點A是⊙O上的一動點。

圖1 圖2

1)當(dāng)△ABC的面積最大時,請用尺規(guī)作圖確定點A位置(尺規(guī)作圖只保留作圖痕跡, 不需要寫作法);

2)如圖2,在滿足(1)條件下,連接AO并延長交⊙O于點D,連接BD并延長交AC 的延長線于點E,若∠BAC=45° ,AC2+CE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個長方形運動場被分隔成、、個區(qū), 區(qū)是邊長為的正方形, 區(qū)是邊長為的正方形.

(1)列式表示每個區(qū)長方形場地的周長,并將式子化簡;

(2)列式表示整個長方形運動場的周長,并將式子化簡;

(3)如果, ,求整個長方形運動場的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在△ABC中,AB=AC,BD和CE分別是∠ABC和∠ACB的角平分線,且BD和CE相交于O點.

(1)試說明△OBC是等腰三角形;

(2)連接OA,試判斷直線OA與線段BC的關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案