【題目】已知a,b是實數(shù),定義關(guān)于“△”的一種運算如下:a△b=(a﹣b)2﹣(a+b)2.
(1)小明通過計算發(fā)現(xiàn)a△b=﹣4ab,請說明它成立的理由.
(2)利用以上信息得x= ,若x=3,求(x)4的值.
(3)請判斷等式(a△b)△c=a△(b△c)是否成立?并說明理由.
【答案】(1)見解析;(2)-4,25;(3)成立,理由見解析
【解析】
(1)利用所給公式可得算式(a﹣b)2﹣(a+b)2,然后化簡計算即可;
(2)根據(jù)(1)中的發(fā)現(xiàn),通過計算可得x△=﹣4,然后把x+=3代入=(x﹣)2﹣(x+)2=﹣4進行計算即可;
(3)利用(1)所給規(guī)律分別進行計算即可.
(1)a△b=(a﹣b)2﹣(a+b)2=a2﹣2ab+b2﹣a2﹣2ab﹣b2=﹣4ab.
故a△b=﹣4ab成立;
(2)由題意得,x△=(x﹣)2﹣(x+)2=﹣4x=﹣4,
∵x+=3,
∴﹣4=(x﹣)2﹣(x﹣)2=(x﹣)2﹣32,
∴(x﹣)2=5,
∴(x﹣)4=52=25,
故答案為:﹣4,25;
(3)(a△b)△c=a△(b△c)成立,
理由如下:
∵由(1)可知:左邊=(a△b)△c=(﹣4ab)△c=﹣4×(﹣4ab)×c=16abc,
右邊=a△(b△c)=a△(﹣4bc)=﹣4a×(﹣4bc)=16abc,
∴(a△b)△c=a△(b△c).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+x+4的對稱軸是直線x=3,且與x軸相交于A,B兩點(B點在A點右側(cè))與y軸交于C點.
(1)求拋物線的解析式和A、B兩點的坐標(biāo);
(2)若點P是拋物線上B、C兩點之間的一個動點(不與B、C重合),則是否存在一點P,使△PBC的面積最大.若存在,請求出△PBC的最大面積;若不存在,試說明理由;
(3)若M是拋物線上任意一點,過點M作y軸的平行線,交直線BC于點N,當(dāng)MN=3時,求M點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知y與x+2成正比例,且當(dāng)x=1時,y=6;
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)x=﹣3時,求y的值;
(3)當(dāng)y <-1時,求x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】不透明的袋子中裝有個相同的小球,它們除顏色外無其它差別,把它們分別標(biāo)號:、、、
隨機摸出一個小球后,放回并搖勻,再隨機摸出一個,用列表或畫樹狀圖的方法求出“兩次取的球標(biāo)號相同”的概率
隨機摸出兩個小球,直接寫出“兩次取出的球標(biāo)號和等于”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中有一個△ABC,頂點A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)畫出△ABC關(guān)于y軸的對稱軸圖形△A1B1C1(不寫畫法);
點A1的坐標(biāo)為 ;點B1的坐標(biāo)為 ;點C1的坐標(biāo)為 .
(2)若網(wǎng)格上的每個小正方形的邊長為1,則△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在10×10的正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點△ABC(即三角形的頂點都在格點上).
(1)在圖中作出△ABC關(guān)于直線l對稱的△A1B1C1;(要求:A與A1,B與B1,C與C1相對應(yīng))
(2)在(1)問的結(jié)果下,連接BB1,CC1,求四邊形BB1C1C的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年4月22日是第49個世界地球日,今年的主題為“珍惜自然資源呵護美麗國土一講好我們的地球故事”地球日活動周中,同學(xué)們開展了豐富多彩的學(xué)習(xí)活動,某小組搜集到的數(shù)據(jù)顯示,山西省總面積為15.66萬平方公里,其中土石山區(qū)面積約5.59萬平方公里,其余部分為丘陵與平原,丘陵面積比平原面積的2倍還多0.8萬平方公里.
(1)求山西省的丘陵面積與平原面積;
(2)活動周期間,兩位家長計劃帶領(lǐng)若干學(xué)生去參觀山西地質(zhì)博物館,他們聯(lián)系了兩家旅行社,報價均為每人30元.經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是,家長免費,學(xué)生都按九折收費;乙旅行社的優(yōu)惠條件是,家長、學(xué)生都按八折收費.若只考慮收費,這兩位家長應(yīng)該選擇哪家旅行社更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t.
(1)求拋物線的表達式;
(2)設(shè)拋物線的對稱軸為l,l與x軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
(3)如圖2,連接BC,PB,PC,設(shè)△PBC的面積為S.
①求S關(guān)于t的函數(shù)表達式;
②求P點到直線BC的距離的最大值,并求出此時點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△AOP為等邊三角形,點A(0,1),B為y軸上一動點,以BP為邊作等邊△PBC.
(1)當(dāng)點B運動到(0,4)時,AC= ;
(2)∠CAP的度數(shù)為 ;
(3)當(dāng)點B運動時,AE的長度是否發(fā)生變化?若不變,求出AE的值;若變化,說明變化的規(guī)律.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com