已知,如圖,點(diǎn)D是△ABC的兩外角平分線的交點(diǎn),下列說法:
①AD=CD          
②D到AB、BC的距離相等
③D到△ABC的三邊的距離相等 
④點(diǎn)D在∠B的平分線上.
其中正確的說法的序號是
②③④
②③④
分析:過點(diǎn)D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,根據(jù)角平分線上的點(diǎn)到角的兩邊的距離相等可得DE=DF=DG,再根據(jù)到角的兩邊距離相等的點(diǎn)在角的平分線上解答.
解答:解:如圖,過點(diǎn)D作DE⊥AB于E,作DF⊥BC于F,作DG⊥AC于G,
∵點(diǎn)D是△ABC的兩外角平分線的交點(diǎn),
∴DE=DG,DF=DG,
∴DE=DF=DG,
∴點(diǎn)D在∠B的平分線上,故②③④正確,
只有點(diǎn)G是AC的中點(diǎn)時(shí),AD=CD,故①錯(cuò)誤,
綜上所述,說法正確的是②③④.
故答案為:②③④.
點(diǎn)評:本題考查了角平分線上的點(diǎn)到角的兩邊的距離相等的性質(zhì),到角的兩邊距離相等的點(diǎn)在角的平分線上,熟記性質(zhì)并作出輔助線是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點(diǎn)P是平行四邊形ABCD的邊DC上一點(diǎn),且AP和BP分別平分∠DAB和∠C精英家教網(wǎng)BA.
(1)求證:AP⊥PB;
(2)如果AD=5,AP=8,求△APB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問題:(1)觀察并猜測,無論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說明:如果經(jīng)過思考分析,沒有找到解決(2)中的問題的方法,請直接驗(yàn)證(1)中猜測的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、已知:如圖,點(diǎn)P是正方形ABCD的對角線AC上的一個(gè)動(dòng)點(diǎn)(A、C除外),作PE⊥AB于點(diǎn)E,作PF⊥BC于點(diǎn)F,設(shè)正方形ABCD的邊長為x,矩形PEBF的周長為y,在下列圖象中,大致表示y與x之間的函數(shù)關(guān)系的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,點(diǎn)O是四邊形BCED外接圓的圓心,點(diǎn)O在BC上,點(diǎn)A在CB的延長線上,且∠AD精英家教網(wǎng)B=∠DEB,EF⊥BC于點(diǎn)F,交⊙O于點(diǎn)M,EM=2
5

(1)求證:AD是⊙O的切線;
(2)若弧BM上有一動(dòng)點(diǎn)P,且sin∠CPM=
2
3
,求⊙O直徑的長;
(3)在(2)的條件下,如果DE=
14
,求tan∠DBE的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、已知:如圖,點(diǎn)D是△ABC的邊AC上的一點(diǎn),過點(diǎn)D作DE⊥AB,DF⊥BC,E、F為垂足,再過點(diǎn)D作DG∥AB,交BC于點(diǎn)G,且DE=DF.
(1)求證:DG=BG;
(2)求證:BD垂直平分EF.

查看答案和解析>>

同步練習(xí)冊答案