【題目】如圖,在平面直角坐標(biāo)系中,直角△ABC的三個頂點(diǎn)分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應(yīng)的△A1B1C1;

(2)分別連結(jié)AB1、BA1后,求四邊形AB1A1B的面積

【答案】(1)作圖見解析;(2)12

【解析】

試題分析:(1)利用網(wǎng)格特點(diǎn),延長AC到A1使A1C=AC,延長BC到B1使B1C=BC,C點(diǎn)的對應(yīng)點(diǎn)C1與C點(diǎn)重合,則△A1B1C1滿足條件;

(2)四邊形AB1A1B的對角線互相垂直平分,則四邊形AB1A1B為菱形,然后利用菱形的面積公式計算即可.

試題解析:(1)如圖,△A1B1C1為所作

(2)四邊形AB1A1B的面積=×6×4=12.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AD=2AB=4,E是AD的中點(diǎn),一塊足夠大的三角板的直角頂點(diǎn)與點(diǎn)E重合,將三角板繞點(diǎn)E旋轉(zhuǎn),三角板的兩直角邊分別交AB,BC(或它們的延長線)于點(diǎn)M,N,設(shè)∠AEM=α(0°<α<90°),給出下列四個結(jié)論:

①AM=CN;②∠AME=∠BNE;③BN﹣AM=2;④S△EMN=

上述結(jié)論中正確的個數(shù)是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】氣象臺預(yù)報“本市明天降水概率是30%”,對此消息下列說法正確的是( )
A.本市明天將有30%的地區(qū)降水
B.本市明天將有30%的時間降水
C.本市明天有可能降水
D.本市明天肯定不降水

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,OA⊥OB,AB⊥x軸于點(diǎn)C,點(diǎn)A(,1)在反比例函數(shù)的圖象上

(1)求反比例函數(shù)的表達(dá)式;

(2)在x軸的負(fù)半軸上存在一點(diǎn)P,使得S△AOP=S△AOB,求點(diǎn)P的坐標(biāo);

(3)若將△BOA繞點(diǎn)B按逆時針方向旋轉(zhuǎn)60°得到△BDE.直接寫出點(diǎn)E的坐標(biāo),并判斷點(diǎn)E是否在該反比例函數(shù)的圖象上,說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(2,﹣3)關(guān)于x軸的對稱點(diǎn)在(  )

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(,0)兩點(diǎn),與y軸交于點(diǎn)C,過拋物線上點(diǎn)M(1,3)作MN⊥x軸于點(diǎn)N,連接OM

(1)求此拋物線的解析式;

(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點(diǎn)E、F

①當(dāng)點(diǎn)F為M′O′的中點(diǎn)時,求t的值;

②如圖2,若直線M′N′與拋物線相交于點(diǎn)G,過點(diǎn)G作GH∥M′O′交AC于點(diǎn)H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副直角三角板按圖11-14擺放,點(diǎn)CEF上,AC經(jīng)過點(diǎn)D.已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°.求∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】y=(m1x2|m|+3是關(guān)于x的一次函數(shù),則m的值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)(4,﹣3)關(guān)于x軸對稱的點(diǎn)的坐標(biāo)是( )
A.(4,3)
B.(-4,3)
C.(3,-4)
D.(-3,-4)

查看答案和解析>>

同步練習(xí)冊答案