已知二次函數(shù)y1=ax2+bx+c(a≠0)與一次函數(shù)y2=kx+m(k≠0)的圖象相交于點(diǎn)A(-2,4),B(8,2)(如圖所示),則能使y1<y2成立的x的取值范圍是( )

A.x>2
B.x<-2
C.x>0
D.-2<x<8
【答案】分析:根據(jù)兩函數(shù)交點(diǎn)坐標(biāo)得出,能使y1<y2成立的x的取值范圍即是圖象y2在圖象y1上面是x的取值范圍,即可得出答案.
解答:解:∵二次函數(shù)y1=ax2+bx+c(a≠0)與一次函數(shù)y2=kx+m(k≠0)的圖象相交于點(diǎn)A(-2,4),B(8,2),
∵結(jié)合圖象,
∴能使y1<y2成立的x的取值范圍是:-2<x<8,
故選:D.
點(diǎn)評:此題主要考查了利用函數(shù)圖象判定兩函數(shù)的大小關(guān)系,此題型是中考中考查重點(diǎn)也是難點(diǎn),同學(xué)們應(yīng)熟練掌握.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知二次函數(shù)y1=x2-2x-1的圖象和反比例函數(shù)y2=
kx
的圖象都經(jīng)過點(diǎn)(1,a).
(1)求a的值;
(2)試在下圖所示的直角坐標(biāo)系中,畫出該二次函數(shù)及反比例函數(shù)的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y1=ax2+bx+c(a≠0)的圖象經(jīng)過三點(diǎn)(1,0),(-3,0),(0,-
32
).精英家教網(wǎng)
(1)求二次函數(shù)的解析式.
(2)在給定的直角坐標(biāo)系中作出這個函數(shù)的圖象,并觀察圖象,寫出x為何值,y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知二次函數(shù)y1=ax2+bx+c與一次函數(shù)y2=kx+m的圖象相交于點(diǎn)A(-2,4),B(8,2),則能使y1<y2成立的x的取值范圍是
-2<x<8
-2<x<8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•吳江市模擬)如圖,已知二次函數(shù)y1=ax2+bx+c與一次函數(shù)y2=kx+m的圖象相交于A(-1,2)、B(4,1)兩點(diǎn),則關(guān)于x的不等式ax2+bx+c>kx+m的解集是
x<-1或x>4
x<-1或x>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)y1=ax2+bx-3的圖象經(jīng)過點(diǎn)A(2,-3),B(-1,0),與y軸交于點(diǎn)C,與x軸另一交點(diǎn)交于點(diǎn)D.
(1)求二次函數(shù)的解析式;
(2)求點(diǎn)C、點(diǎn)D的坐標(biāo);
(3)若一條直線y2,經(jīng)過C、D兩點(diǎn),請直接寫出y1>y2時,x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案