【題目】如圖,碼頭A在碼頭B的正東方向,兩個(gè)碼頭之間的距離為32海里,今有一貨船由碼頭A出發(fā),沿北偏西60°方向航行到達(dá)小島C處,此時(shí)測(cè)得碼頭B在南偏東45°方向,求碼頭A與小島C的距離.(≈1.732,結(jié)果精確到0.01海里)
【答案】解:作CD⊥AB交AB延長(zhǎng)線于點(diǎn)D,
∠D=90°
由題意,得∠DCB=45°,∠CAD=90°﹣60°=30°,AB=32海里,
設(shè)CD=x海里,在Rt△DCB中,tan∠DCB=,tan45°==1,
BD=x,AD=AB+BD=32+x,tan30°==,
解得x=16+16,
∵∠CAD=30°,∠CDA=90°,
∴AC=2CD=32+32≈87.42海里,
答:碼頭A與小島C的距離約為87.42海里.
【解析】根據(jù)正切函數(shù),可得CD的長(zhǎng),根據(jù)直角三角形的性質(zhì),可得答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解關(guān)于方向角問(wèn)題(指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=x2+px+q(p<0)的圖象與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C(0,﹣1),△ABC的面積為 .
(1)求該二次函數(shù)的關(guān)系式;
(2)過(guò)y軸上的一點(diǎn)M(0,m)作y軸的垂線,若該垂線與△ABC的外接圓有公共點(diǎn),求m的取值范圍;
(3)在該二次函數(shù)的圖象上是否存在點(diǎn)D,使四邊形ACBD為直角梯形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,
點(diǎn)E為矩形ABCD外一點(diǎn),AE=DE,連接EB、EC分別與AD相交于點(diǎn)F、G.求證:
(1)△EAB≌△EDC;
(2)∠EFG=∠EGF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為支援災(zāi)區(qū),某校愛(ài)心活動(dòng)小組準(zhǔn)備用籌集的資金購(gòu)買A、B兩種型號(hào)的學(xué)習(xí)用品共1000件.已知B型學(xué)習(xí)用品的單價(jià)比A型學(xué)習(xí)用品的單價(jià)多10元,用180元購(gòu)買B型學(xué)習(xí)用品的件數(shù)與用120元購(gòu)買A型學(xué)習(xí)用品的件數(shù)相同.
(1)求A、B兩種學(xué)習(xí)用品的單價(jià)各是多少元?
(2)若購(gòu)買這批學(xué)習(xí)用品的費(fèi)用不超過(guò)28000元,則最多購(gòu)買B型學(xué)習(xí)用品多少件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第一象限,⊙A與x軸交于B(2,0)、C(8,0)兩點(diǎn),與y軸相切于點(diǎn)D,則點(diǎn)A的坐標(biāo)是( 。
A.(5,4)
B.(4,5)
C.(5,3)
D.(3,5)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AB∥CD,AB≠CD,BD=AC.
(1)求證:AD=BC;
(2)若E、F、G、H分別是AB、CD、AC、BD的中點(diǎn),求證:線段EF與線段GH互相垂直平分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+2經(jīng)過(guò)點(diǎn)A(﹣1,0)和點(diǎn)B(4,0),且與y軸交于點(diǎn)C,點(diǎn)D的坐標(biāo)為(2,0),點(diǎn)P(m,n)是該拋物線上的一個(gè)動(dòng)點(diǎn),連接CA,CD,PD,PB.
(1)求該拋物線的解析式;
(2)當(dāng)△PDB的面積等于△CAD的面積時(shí),求點(diǎn)P的坐標(biāo);
(3)當(dāng)m>0,n>0時(shí),過(guò)點(diǎn)P作直線PE⊥y軸于點(diǎn)E交直線BC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥x軸于點(diǎn)G,連接EG,請(qǐng)直接寫(xiě)出隨著點(diǎn)P的運(yùn)動(dòng),線段EG的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從一個(gè)建筑物的A處測(cè)得對(duì)面樓BC的頂部B的仰角為32°,底部C的俯角為45°,觀測(cè)點(diǎn)與樓的水平距離AD為31m,則樓BC的高度約為 m(結(jié)果取整數(shù)).(參考數(shù)據(jù):sin32°≈0.5,cos32°≈0.8,tan32°≈0.6)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com