如圖,在Rt△ABC中,∠ACB=90°,AC=5,CB=12,AD是△ABC的角平分線,過A、C、D三點(diǎn)的圓與斜邊AB交于點(diǎn)E,連接DE.
(1)求BE的長(zhǎng);
(2)求△ACD外接圓的半徑.

【答案】分析:(1)由圓O的圓周角∠ACB=90°,根據(jù)90°的圓周角所對(duì)的弦為圓的直徑得到AD為圓O的直徑,再根據(jù)直徑所對(duì)的圓周角為直角可得三角形ADE為直角三角形,又AD是△ABC的角平分線,可得一對(duì)角相等,而這對(duì)角都為圓O的圓周角,根據(jù)同圓或等圓中,相等的圓周角所對(duì)的弦相等可得CD=ED,利用HL可證明直角三角形ACD與AED全等,根據(jù)全等三角形的對(duì)應(yīng)邊相等即可得得出AC=AE,進(jìn)而得出BE的長(zhǎng);
(2)由第一問的結(jié)論AE=AC,用AB-AE可求出EB的長(zhǎng),再由(1)∠AED=90°,得到DE與AB垂直,可得三角形BDE為直角三角形,設(shè)DE=CD=x,用CB-CD表示出BD=12-x,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,即為CD的長(zhǎng),在直角三角形ACD中,由AC及CD的長(zhǎng),利用勾股定理即可求出AD的長(zhǎng),進(jìn)而得出外接圓半徑.
解答:解:(1)∵∠ACB=90°,且∠ACB為圓O的圓周角(已知),
∴AD為圓O的直徑(90°的圓周角所對(duì)的弦為圓的直徑),
∴∠AED=90°(直徑所對(duì)的圓周角為直角),
又AD是△ABC的角平分線(已知),
∴∠CAD=∠EAD(角平分線定義),
∴CD=DE(在同圓或等圓中,相等的圓周角所對(duì)的弦相等),
在Rt△ACD和Rt△AED中,
,
∴Rt△ACD≌Rt△AED(HL),
∴AC=AE(全等三角形的對(duì)應(yīng)邊相等);
∵△ABC為直角三角形,且AC=5,CB=12,
∴根據(jù)勾股定理得:AB==13,
∴BE=13-AC=13-5=8;

(2)由(1)得到∠AED=90°,則有∠BED=90°,
設(shè)CD=DE=x,則DB=BC-CD=12-x,EB=AB-AE=AB-AC=13-5=8,
在Rt△BED中,根據(jù)勾股定理得:BD2=BE2+ED2,
即(12-x)2=x2+82,
解得:x=
∴CD=,又AC=5,△ACD為直角三角形,
∴根據(jù)勾股定理得:AD==
根據(jù)AD是△ACD外接圓直徑,
∴△ACD外接圓的半徑為:×=
點(diǎn)評(píng):此題考查了圓周角定理,勾股定理,以及全等三角形的判定與性質(zhì),利用了轉(zhuǎn)化的思想,本題的思路為:根據(jù)圓周角定理得出直角,利用勾股定理構(gòu)造方程來求解,從而得到解決問題的目的,靈活運(yùn)用圓周角定理及勾股定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•莆田質(zhì)檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點(diǎn)D,點(diǎn)E是AB上一點(diǎn),以AE為直徑的⊙O過點(diǎn)D,且交AC于點(diǎn)F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點(diǎn)D,求點(diǎn)D到BC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個(gè)30°角的頂點(diǎn)D放在AB邊上移動(dòng),使這個(gè)30°角的兩邊分別與△ABC的邊AC、BC相交于點(diǎn)E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設(shè)AD=x,CF=y.求y與x之間函數(shù)解析式,并寫出函數(shù)的定義域;
(3)如果△CEF與△DEF相似,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點(diǎn),連接DE,點(diǎn)P從點(diǎn)A出發(fā),沿折線AD-DE-EB運(yùn)動(dòng),到點(diǎn)B停止.點(diǎn)P在AD上以
5
cm/s的速度運(yùn)動(dòng),在折線DE-EB上以1cm/s的速度運(yùn)動(dòng).當(dāng)點(diǎn)P與點(diǎn)A不重合時(shí),過點(diǎn)P作PQ⊥AC于點(diǎn)Q,以PQ為邊作正方形PQMN,使點(diǎn)M落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)點(diǎn)P在線段DE上運(yùn)動(dòng)時(shí),線段DP的長(zhǎng)為
(t-2)
(t-2)
cm,(用含t的代數(shù)式表示).
(2)當(dāng)點(diǎn)N落在AB邊上時(shí),求t的值.
(3)當(dāng)正方形PQMN與△ABC重疊部分圖形為五邊形時(shí),設(shè)五邊形的面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案