【題目】如圖,△ABC是等邊三角形,點D,E分別在BC,AC上,且BD=CE,AD與BE相交于點F,
(1)證明:△ABD≌△BCE;
(2)證明:△ABE∽△FAE;
(3)若AF=7,DF=1,求BD的長.
【答案】(1)證明見解析;(2)證明見解析;(3)BD=2.
【解析】
(1)根據(jù)等邊三角形的性質(zhì),利用SAS證得△ABD≌△BCE;
(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可證∠ABE=∠EAF,又∠AEF=∠BEA,由此可以證明△AEF∽△BEA;
(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以證明△BDF∽△ADB,然后可以得到,即BD2=ADDF=(AF+DF)DF.
解:(1)∵△ABC是等邊三角形,
∴AB=BC,∠ABD=∠BCE,
在△ABD與△BCE中
∵,
∴△ABD≌△BCE(SAS);
(2)由(1)得:∠BAD=∠CBE,
又∵∠ABC=∠BAC,
∴∠ABE=∠EAF,
又∵∠AEF=∠BEA,
∴△AEF∽△BEA;
(3)∵∠BAD=∠CBE,∠BDA=∠FDB,
∴△ABD∽△BDF,
∴,
∴BD2=ADDF=(AF+DF)DF=8,
∴BD=2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側(cè)),與y軸交于點C.將拋物線m繞點B旋轉(zhuǎn)180°,得到新的拋物線n,它的頂點為C1,與x軸的另一個交點為A1.若四邊形AC1A1C為矩形,則a,b應(yīng)滿足的關(guān)系式為( 。
A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,菱形ABCO的頂點O在坐標(biāo)原點,且與反比例函數(shù)y=的圖象相交于A(m,3),C兩點,已知點B(2,2),則k的值為( )
A. 6B. ﹣6C. 6D. ﹣6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】元旦前夕,某企業(yè)接到一批粽子生產(chǎn)任務(wù),約定這批粽子的出廠價為每只4元,按要求在20天內(nèi)完成.為了按時完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人小丁第天生產(chǎn)的粽子數(shù)量為只,與滿足如下關(guān)系:
(1)小丁第幾天生產(chǎn)的粽子數(shù)量為280只?
(2)如圖,設(shè)第天生產(chǎn)的每只粽子的成本是元,與之間的關(guān)系可用圖中的函數(shù)圖象來刻畫.若小丁第天創(chuàng)造的利潤為元,求與之間的函數(shù)表達式,并求出第幾天的利潤最大?最大利潤是多少元?(利潤=出廠價-成本)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】朗讀者自開播以來,以其厚重的文化底蘊和感人的人文情懷,感動了數(shù)以億計的觀眾,岳池縣某中學(xué)開展“朗讀”比賽活動,九年級、班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績滿分為100分如圖所示.
平均數(shù) | 中位數(shù) | 眾數(shù) | |
九班 | 85 | 85 | |
九班 | 80 |
根據(jù)圖示填寫表格;
結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績較好;
如果規(guī)定成績較穩(wěn)定班級勝出,你認為哪個班級能勝出?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD頂點C、D在反比例函數(shù)y=(x>0)圖象上,頂點A、B分別在x軸、y軸的正半軸上,則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A、B兩點的坐標(biāo)分別為(20,0)和(0,15),動點P從點A出發(fā)在線段AO上以每秒2cm的速度向原點O運動,動直線EF從x軸開始以每秒lcm的速度向上平行移動(即EF∥x軸),分別與y軸、線段AB交于點E、F,連接EP、FP,設(shè)動點P與動直線EF同時出發(fā),運動時間為t秒.
(1)求t=9時,△PEF的面積;
(2)直線EF、點P在運動過程中,是否存在這樣的t使得△PEF的面積等于40cm2?若存在,請求出此時t的值;若不存在,請說明理由;
(3)當(dāng)t為何值時,△EOP與△BOA相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:給定一個矩形,如果存在另一個矩形,它的周長和面積分別是已知矩形的周長和面積的2倍,則這個矩形是給定矩形的“加倍”矩形.如圖,矩形是矩形的“加倍”矩形.
解決問題:
(1)當(dāng)矩形的長和寬分別為3,2時,它是否存在“加倍”矩形?若存在,求出“加倍”矩形的長與寬,若不存在,請說明理由.
(2)邊長為的正方形存在“加倍”正方形嗎?請做出判斷,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,P點為半徑OA上異于O點和A點的一個點,過P點作與直徑AB垂直的弦CD,連接AD,作BE⊥AB,OE∥AD交BE于E點,連接AE、DE、AE交CD于F點.
(1)求證:DE為⊙O切線;
(2)若⊙O的半徑為3,sin∠ADP=,求AD;
(3)請猜想PF與FD的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com