【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
【答案】D
【解析】解:在矩形ABCD中,
∵AD∥BC,
∴∠DEF=∠EFB=60°,
∵把矩形ABCD沿EF翻折點B恰好落在AD邊的B′處,
∴∠EFB=∠EFB′=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,
在△EFB′中,
∵∠DEF=∠EFB=∠EB′F=60°
∴△EFB′是等邊三角形,
Rt△A′EB′中,
∵∠A′B′E=90°﹣60°=30°,
∴B′E=2A′E,而A′E=2,
∴B′E=4,
∴A′B′=2 ,即AB=2 ,
∵AE=2,DE=6,
∴AD=AE+DE=2+6=8,
∴矩形ABCD的面積=ABAD=2 ×8=16 .
故答案為:16 .
根據(jù)平行線的性質(zhì)和折疊的性質(zhì)易證得△EFB′是等邊三角形,繼而可得△A′B′E中,B′E=2A′E,則可求得B′E的長,然后由勾股定理求得A′B′的長,繼而求得答案.
科目:初中數(shù)學 來源: 題型:
【題目】隨著新農(nóng)村的建設和舊城的改造,我們的家園越來越美麗,小明家附近廣場中央新修了一個圓形噴水池,在水池中心豎直安裝了一根高米的噴水管,它噴出的拋物線形水柱在與池中心的水平距離為米處達到最高,水柱落地處離池中心米.
(1)請你建立適當?shù)闹苯亲鴺讼,并求出水柱拋物線的函數(shù)解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形的邊長為,點分別是線段上的動點,連接并延長,交邊于,過作,垂足為,交邊于點.
(1)如圖1,若點與點重合,求證:;
(2)如圖2,若點從點出發(fā),以的速度沿向點運動,同時點從點出發(fā),以的速度沿向點運動,運動時間為.
①設,求關于t的函數(shù)表達式;
②當時,連接,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種雙肩包,已知這種雙肩包的成本價為每個30元.市場調(diào)查發(fā)現(xiàn),這種雙肩包每天的銷售量y(單位:個)與銷售單價x(單位:元)有如下關系:y=-x+60(30≤x≤60).
設這種雙肩包每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)解析式;
(2)這種雙肩包銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種雙肩包的銷售單價不高于48元,該商店銷售這種雙肩包每天要獲得200元的銷售利潤,銷售單價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學興趣小組研究某型號冷柜溫度的變化情況,發(fā)現(xiàn)該冷柜的工作過程是:當溫度達到設定溫度時,制冷停止,此后冷柜中的溫度開始逐漸上升,當上升到時,制冷開始,溫度開始逐漸下降,當冷柜自動制冷至時,制冷再次停止,……,按照以上方式循環(huán)進行.
同學們記錄了44內(nèi)15個時間點冷柜中的溫度隨時間的變化情況,制成下表:
(1)通過分析發(fā)現(xiàn),冷柜中的溫度是時間的函數(shù).
①當時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;
②當時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式 ;
(2)的值為 ;
(3)如圖,在直角坐標系中,已描出了上表中部分數(shù)據(jù)對應的點,請描出剩余對應的點,并畫出時溫度隨時間變化的函數(shù)圖象.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com