如圖,梯形ABCD中,ADBC,∠ABD=∠C,AB=2,AD=1.6,CD=3.
(1)求BD,BC的長;
(2)畫出△BCD的外接圓(不寫畫法,保留作圖痕跡),并指出AD是否為該圓的切線;
(3)計算tanC的值.
(1)∵ADBC,
∴∠ADB=∠DBC,
而∠ABD=∠C,
∴△ABD△DCB,
AB
DC
=
AD
BD
=
BD
BC
,
2
3
=
1.6
BD
=
BD
BC
,
∴BD=2.4,BC=3.6.

(2)△BCD的外接圓如右圖所示,AD不是其外接圓的切線.

(3)方法一:
過D作DE⊥BC于E.
設(shè)CE=x,則BE=3.6-x.
根據(jù)勾股定理,得BD2-BE2=DE2=CD2-CE2
即2.42-(3.6-x)2=DE2=32-x2,
解得x=
9
4
,DE=
3
7
3

∴在Rt△CDE中,有tanC=
DE
CE
=
7
3


方法二:
過D作DFAB交BC于F,則ABFD是平行四邊形,
所以DF=2,CF=BC-BF=3.6-1.6=2,
∴△CDF是等腰三角形.
過F作FG⊥CD于G,則FG2=CF2-(
1
2
CD)2=
7
4
,F(xiàn)G=
7
2
,
∴在Rt△CFG中,有tanC=
DE
CE
=
7
3

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,在梯形ABCD中,ABDC,中位線EF=7cm,對角線AC⊥BD,∠BDC=30°.求梯形的高AH.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCD中,已知底AD=6cm,BC=11cm,腰CD=12cm,則這個直角梯形的周長為______cm.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

若等腰梯形ABCD的上、下底之和為4,并且兩條對角線所夾銳角為60°,則該等腰梯形的面積為______(結(jié)果保留根號的形式).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,AB=DC,∠ACB=40°,∠ACD=30°,則∠B=______°,∠D=______°.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

等腰梯形ABCD中,ADBC,E、F、G、H分別是AD、BE、BC、CE的中點.
試探究:
(1)四邊形EFGH的形狀;
(2)若BC=2AD,且梯形ABCD的面積為9,求四邊形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等腰梯形ABCD中,ADBC,AB=CD,AC=BC,AE⊥BC于E,AD:AE=1:4,若AB=4
5
,則梯形ABCD的面積等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ABCD,∠BCD=90°,BD平分∠ABC.
(1)求證:DC=BC;
(2)E是梯形內(nèi)一點,F(xiàn)是梯形外一點,且∠EDC=∠FBC,DE=BF,試判斷△ECF的形狀,并證明你的結(jié)論;
(3)在(2)的條件下,當BE:CE=1:2,∠BEC=135°時,求
BE
BF
的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一等腰梯形兩組對邊中點連線段的平方和為8,則這個等腰梯形的對角線長為______.

查看答案和解析>>

同步練習冊答案