解:(Ⅰ)設(shè)直線(xiàn)OA的解析式為y=kx,
∵A(2,4),
∴2k=4.
∴k=2.
∴直線(xiàn)OA的解析式為y=2x.
(Ⅱ)①∵頂點(diǎn)M的橫坐標(biāo)為m,且在線(xiàn)段OA上移動(dòng),
∴y=2m(0≤m≤2).
∴頂點(diǎn)M的坐標(biāo)為(m,2m).
∴拋物線(xiàn)的解析式為y=(x-m)
2+2m.
當(dāng)x=2時(shí),y=(2-m)
2+2m=m
2-2m+4(0≤m≤2).
∴點(diǎn)P的坐標(biāo)是(2,m
2-2m+4).
∵PB=m
2-2m+4=(m-1)
2+3,
又∵0≤m≤2,
∴當(dāng)m=1時(shí),線(xiàn)段PB最短.
②當(dāng)線(xiàn)段PB最短時(shí),拋物線(xiàn)的解析式為y=x
2-2x+3,點(diǎn)P的坐標(biāo)是(2,3).
假設(shè)在拋物線(xiàn)上存在點(diǎn)Q,使S
△QMA=S
△PMA.
當(dāng)點(diǎn)Q落在直線(xiàn)OA的下方時(shí),過(guò)點(diǎn)P作直線(xiàn)PC∥AO交y軸于點(diǎn)C.
∵PB=3,BA=4,
∴AP=1.
∴直線(xiàn)PC的解析式為y=2x-1.
根據(jù)題意,列出方程組
∴x
2-2x+3=2x-1.
解得x
1=2,x
2=2.
∴
即點(diǎn)Q的坐標(biāo)是(2,3).
∴點(diǎn)Q與點(diǎn)P重合.
∴此時(shí)拋物線(xiàn)上不存在點(diǎn)Q使△QMA與△PMA的面積相等.
當(dāng)點(diǎn)Q落在直線(xiàn)OA的上方時(shí),作點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)D,過(guò)點(diǎn)D作直線(xiàn)DE∥AO,交y軸于點(diǎn)E,
∵AP=1,
∴DA=1.
∴直線(xiàn)DE的解析式為y=2x+1.
根據(jù)題意,列出方程組
∴x
2-2x+3=2x+1.
解得
,
.
∴
或
∴此時(shí)拋物線(xiàn)上存在點(diǎn)Q
1(
,
),Q
2(
,
),使△QMA與△PMA的面積相等.
綜上所述,拋物線(xiàn)上存在點(diǎn)Q
1(
,
),Q
2(
,
),使△QMA與△PMA的面積相等.
(Ⅲ)∵點(diǎn)D、E關(guān)于原點(diǎn)成中心對(duì)稱(chēng),
∴x
2=-x
1,y
2=-y
1①
∵D、E兩點(diǎn)在拋物線(xiàn)C
2上,
∴
,②
.③
把①代入③,得
.④
②-④得2y
1=-2x
1.
∴y
1=-x
1.
設(shè)直線(xiàn)DE的解析式為y=k′x,
由題意,x
1≠0,
∴k′=-1.
∴直線(xiàn)DE的解析式為y=-x.
根據(jù)題意,列出方程組
則有x
2+c=0,即x
2=-c.
∵點(diǎn)D、E在拋物線(xiàn)C
2上,即拋物線(xiàn)C
2與直線(xiàn)DE有兩個(gè)公共點(diǎn),
∴-c>0,即c<0.
∴c的取值范圍是c<0.
分析:(I)直線(xiàn)OA的解析式為y=kx,把點(diǎn)A(2,4)代入即可求出k的值,進(jìn)而得出直線(xiàn)的解析式;
(II)①由頂點(diǎn)M的橫坐標(biāo)為m,且在線(xiàn)段OA上移動(dòng)可得出y與m的函數(shù)關(guān)系式,故可得出拋物線(xiàn)的解析式,當(dāng)x=2時(shí)可得出y與m的函數(shù)關(guān)系式,進(jìn)而可得出P點(diǎn)坐標(biāo),由m的取值范圍即可得出結(jié)論;
②當(dāng)線(xiàn)段PB最短時(shí),拋物線(xiàn)的解析式為y=x
2-2x+3,點(diǎn)P的坐標(biāo)是(2,3).假設(shè)在拋物線(xiàn)上存在點(diǎn)Q,使S
△QMA=S
△PMA,當(dāng)點(diǎn)Q落在直線(xiàn)OA的下方時(shí),過(guò)點(diǎn)P作直線(xiàn)PC∥AO交y軸于點(diǎn)C.PB=3,BA=4,可知直線(xiàn)PC的解析式為y=2x-1,聯(lián)立直線(xiàn)與拋物線(xiàn)的解析式即可求出Q點(diǎn)的坐標(biāo);當(dāng)點(diǎn)Q落在直線(xiàn)OA的上方時(shí),作點(diǎn)P關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)D,過(guò)點(diǎn)D作直線(xiàn)DE∥AO,交y軸于點(diǎn)E,同理可得直線(xiàn)DE的解析式,立直線(xiàn)與拋物線(xiàn)的解析式即可求出Q點(diǎn)的坐標(biāo);
(III)由點(diǎn)D、E關(guān)于原點(diǎn)成中心對(duì)稱(chēng),可知x
2=-x
1,y
2=-y
1,再由D、E兩點(diǎn)在拋物線(xiàn)C
2上,可得出y與x的關(guān)系式,聯(lián)立直線(xiàn)DE與拋物線(xiàn)的解析式即可得出x
2+c=0,點(diǎn)D、E在拋物線(xiàn)C
2上,即拋物線(xiàn)C
2與直線(xiàn)DE有兩個(gè)公共點(diǎn),
點(diǎn)評(píng):本題考查的是二次函數(shù)綜合題,涉及到用待定系數(shù)法求一次函數(shù)與二次函數(shù)的解析式、一元二次方程根的判別式等知識(shí),難度較大.